
How To Deal With Your Raspberry
Spy

Gavin L. Rebeiro

March 2, 2021



2



Cover

The artwork on the cover of this work is used under ex-
plicit written permission by the artist. Any copying, dis-
tributing or reproduction of this artwork without the same
explicit permission is considered theft and/or misuse of in-
tellectual and creative property.

• Artist: Cay

• Artist Contact Details: catthecay@gmail.com

• Artist Portfolio: https://thecayart.wixsite.com/artwork/
contact

These covers are here to spice things up a bit. Want to
have your artwork showcased? Just send an email over to

contact@e2eops.io

3

mailto:catthecay@gmail.com
https://thecayart.wixsite.com/artwork/contact
https://thecayart.wixsite.com/artwork/contact
mailto:contact@e2eops.io


4 COVER

and let us know!

For encrypted communications, you can use the OpenPGP Key
provided in chapter 6.



Copyright

• Author: Gavin L. Rebeiro

• Copyright Holder: Gavin L. Rebeiro, 2021

• Contact Author: glr@e2eops.io

• Publisher: E2EOPS PRESS LIMITED

• Contact Publisher: contact@e2eops.io

This work is licensed under a Creative Commons Attribution-
ShareAlike 4.0 International License.

For encrypted communications, you can use the OpenPGP Key
provided in chapter 6.

5

mailto:glr@e2eops.io
mailto:contact@e2eops.io
https://creativecommons.org/licenses/by-sa/4.0/
https://creativecommons.org/licenses/by-sa/4.0/


6 COPYRIGHT



Chapter 1

Acknowledgements

Techrights techrights.org (TR) deserves credit for coverage
of the Raspberry Spy Foundation’s underhand tactics; a heart-
felt thanks to everyone who participated and notified TR about
the Raspberry Spy espionage. TR has been robbed of credit
they deserved in the early days of news coverage. The fol-
lowing links go over some of the news coverage from TR:

• Raspberry Pi (at Least Raspbian GNU/Linux and/or Rasp-
berry Pi Foundation) Appears to Have Been Infiltrated by
Microsoft and There Are Severe Consequences

• Raspberry Pi Foundation is Trying to Cover Up Its Deal
With the Devil by Censoring Its Own Customers

• Raspberry Pi Foundation Owes Customers an Apology

• Holding the Raspberry Pi Foundation Accountable by Ex-
plaining What Happened (and Providing Evidence)

• Raspberry Pied in the Face — Part I: What is Known About
the Relationship Between Microsoft and the Raspberry Pi
Foundation

• Raspberry Pi OS Adds Microsoft Repository Without User
Permission

• Raspberry Pied in the Face — Part II: Raspberry Pi Foun-
dation in Violation of GNU/Linux Rules (Because of Mi-
crosoft)

• Raspberry Pied in the Face — Part III: Eben Upton’s Re-
sponse and Its Significance

7

techrights.org
http://techrights.org/2021/02/02/microsoft-pi/
http://techrights.org/2021/02/02/microsoft-pi/
http://techrights.org/2021/02/02/microsoft-pi/
http://techrights.org/2021/02/03/eben-up-the-microsoft/
http://techrights.org/2021/02/03/eben-up-the-microsoft/
http://techrights.org/2021/02/05/pi-apology-and-trust/
http://techrights.org/2021/02/06/facts-on-raspberry-pi-foundation/
http://techrights.org/2021/02/06/facts-on-raspberry-pi-foundation/
http://techrights.org/2021/02/06/raspberry-pi-under-second-microsoft-attack/
http://techrights.org/2021/02/06/raspberry-pi-under-second-microsoft-attack/
http://techrights.org/2021/02/06/raspberry-pi-under-second-microsoft-attack/
http://techrights.org/2021/02/07/lunduke-on-raspi/
http://techrights.org/2021/02/07/lunduke-on-raspi/
http://techrights.org/2021/02/07/violation-of-debian-guidelines/
http://techrights.org/2021/02/07/violation-of-debian-guidelines/
http://techrights.org/2021/02/07/violation-of-debian-guidelines/
http://techrights.org/2021/02/08/eben-upton-face-saving/
http://techrights.org/2021/02/08/eben-upton-face-saving/


8 CHAPTER 1. ACKNOWLEDGEMENTS

• Raspberry Pied in the Face — Part IV: Poor Crisis Man-
agement by the Raspberry Pi Foundation

• Raspberry Pied in the Face — Part V: Raspberry Bye? The
Lost of Trust is Pervasive and the (Un)Official Response
Unhelpful

• What Microsoft Did to the Raspberry Pi Foundation is Part
of a Broader Anti-GNU/Linux Strategy

• More Than a Fortnight After Installing Microsoft Surveil-
lance and Keys on Millions of Computers Without Users’
Consent the Spin Comes From the Raspberry Pi Company (via
Microsoft)

• Raspberry Pi Reaffirms Its Commitment to Microsoft (as
Trojan Horse Inside Classrooms) and Abandons the Free Soft-
ware Community

• Microsoft Inside — Part II: Microsoft Has Plans for the
Raspberry Pi or Linux SBCs in General (and It Hides Its
Role in That)

I tried to keep things in chronological order, but you should
just check out the TR site archives from Febuary 2021 onwards
for coverage on this treachery from the Raspberry Spy Foun-
dation.

A big thanks also to the founder of Everything Wrong With
Free Software (EWWFS); EWWFS did a great piece on the Rasp-
berry Spy that is worth reading:

• maybe-dont-buy-a-raspberry-spy

I originally got the inspiration for this paper from the
creator of EWWFS. Much support and encouragement was provided
during the research and development of this paper from EWWFS.

I saw the freedom-crushing propaganda machine in full ac-
tion after the story first broke. Every single forum post
that was censored, every single person in chat rooms that had
been blocked or called a “basher”, and every single person
who boycotts or called for a boycott of the Raspberry Spy,
all give us hope that the fight for freedom is still alive.

http://techrights.org/2021/02/09/insulting-the-clients/
http://techrights.org/2021/02/09/insulting-the-clients/
http://techrights.org/2021/02/10/raspi-part-5/
http://techrights.org/2021/02/10/raspi-part-5/
http://techrights.org/2021/02/10/raspi-part-5/
http://techrights.org/2021/02/12/anti-gnu-linux-strategy/
http://techrights.org/2021/02/12/anti-gnu-linux-strategy/
http://techrights.org/2021/02/13/raspberry-pi-making-things-worse/
http://techrights.org/2021/02/13/raspberry-pi-making-things-worse/
http://techrights.org/2021/02/13/raspberry-pi-making-things-worse/
http://techrights.org/2021/02/13/raspberry-pi-making-things-worse/
http://techrights.org/2021/02/18/raspberry-pi-breaks-up-with-free-software-community/
http://techrights.org/2021/02/18/raspberry-pi-breaks-up-with-free-software-community/
http://techrights.org/2021/02/18/raspberry-pi-breaks-up-with-free-software-community/
http://techrights.org/2021/02/21/raspberry-pi-and-a-plan/
http://techrights.org/2021/02/21/raspberry-pi-and-a-plan/
http://techrights.org/2021/02/21/raspberry-pi-and-a-plan/
http://techrights.org/site-archives/
https://wrongwithfreesw.neocities.org/maybe-dont-buy-a-raspberry-spy.html


9

It is my hope this document helps you advance your free-
doms, learn a few new things, and have fun in the process.
Let’s get hacking!



10 CHAPTER 1. ACKNOWLEDGEMENTS



Contents

Cover 3

Copyright 5

1 Acknowledgements 7

2 Introduction 13
2.1 Prerequisite Knowledge . . . . . . . . . . . . . 13
2.2 Apparatus . . . . . . . . . . . . . . . . . . . . 14

3 Fundamentals 17
3.1 Communication . . . . . . . . . . . . . . . . . . 17
3.2 Kernel Ring Buffer . . . . . . . . . . . . . . . 18
3.3 Drivers . . . . . . . . . . . . . . . . . . . . . 18
3.4 Operating Systems . . . . . . . . . . . . . . . . 21
3.5 Special Files . . . . . . . . . . . . . . . . . . 22

4 Doing The Task 27
4.1 Preparing The Boot Media . . . . . . . . . . . . 27
4.2 Connecting Physical Components . . . . . . . . . 30
4.3 Using Picocom . . . . . . . . . . . . . . . . . . 32
4.4 OS Installation . . . . . . . . . . . . . . . . . 34

5 Thanks 37

6 OpenPGP Key 39

A Malicious Hardware 41

B Linux Kernel Source Tree Analysis 43

C Digital Multimeter Tests 47

11



12 CONTENTS



Chapter 2

Introduction

We don’t want to be spied on; what happens when we’re faced
with an operating system that spies on people? We throw it
in the trash where it belongs! I am boycotting the Raspberry
Spy myself (you’re free to join me in doing so) but I don’t
want people to waste hardware that they already have. So we’re
going to walk through an interesting path of installing a dif-
ferent operating system on the Raspberry Spy; I want to show
you a few things that will empower you to take greater con-
trol over your computing.

We’ll gently walk through and explore the following: how
to install an operating system on an embedded device (a Rasp-
berry Spy, in this case) over a USB-to-UART bridge (UTUB).
This is the main project we’ve got on our hands. Don’t worry
if you’ve never touched embedded systems before; everything
here is accessible to people with a modest set of prerequi-
site knowledge and some basic apparatus.

We’ll delve into things with more depth as we move for-
ward with our project; if you don’t understand something when
you first encounter it, just keep reading.

2.1 Prerequisite Knowledge
There’s not much prerequisite knowledge required. Here’s what
you need to know:

• A basic grasp of how to operate a shell on a GNU/Linux
system. GNU Bash is an example. You don’t need to know

13



14 CHAPTER 2. INTRODUCTION

how to write shell scripts. Knowledge of how to use the
shell interactively will suffice.

That’s it. Really. Anything else you need you will pick
up on the way.

2.2 Apparatus
You will need the following apparatus:

• A Raspberry Spy. I’ve got the Raspberry Spy Model 3 B+
so that’s what I’ll be using in this project.

• A working internet connection.

• A USB thumb drive (used as boot media) for the Raspberry
Spy.1

• A power supply for the Raspberry Spy.

• A USB-to-UART bridge (UTUB). I’ve got a CP2104 from Sil-
icon Labs; this is widely available and you can pick it
up from an online retailer. You want a module that has
all the necessary pins and peripherals already packaged
into one, neat, unit. I believe the specific module I
have is by WINGONEER.

• 3 female-to-female jump wires.

• A computer with any recent GNU/Linux installed on it. The
computer needs to have a working USB port.

• A generic microSD card reader/writer. I have an Anker
AR200.

It’s likely that you already have the apparatus to oper-
ate your Raspberry Spy. Just acquire the additional bits that
you don’t already have. The list here is just for complete-
ness.

Here’s some extra equipment that will make your life eas-
ier:

1If you’ve got a Raspberry Spy that can only accept an SD card as
boot media, you don’t need to fret too much. The procedure is the
same; you just write the OS image to an SD card instead of a USB thumb
drive. Fixing quirks of SD card installations are, however, out of
scope of this project; you should refer to the relevant documentation,
IRC chats, and mailing lists. I will provide links to boot-media-
specific information, when we discuss boot media; this should give you
a starting point to troubleshoot issues.

https://en.wikipedia.org/wiki/Jump_wire


2.2. APPARATUS 15

• When you’re dealing with electronics, you should heed the
old idiom of “two is one and one is none”. Get spares
of whatever you can, as a rule.

• A digital multimeter (DMM) with spare fuses for the mul-
timeter. Being able to do some quality control (QC) be-
fore you hook up your UTUB to your hardware is going to
give you peace of mind. Don’t skimp on the spare fuses
for the DMM; it’s easy to forget how much current you’ve
got flowing through a circuit and fry the DMM’s fuse by
accident2.

• A 2M or longer USB extension cable. Male-to-female is
what you want here. You plug in the male part to your
computer and the female part is open for receiving the
UTUB. This makes life a lot easier (and safer).

• Nitrile gloves. Helps keep you safe.

• Safety goggles. Again, doesn’t hurt to be careful.

You should now have everything you need to get started!

2Real fuses were harmed during the making of this document.



16 CHAPTER 2. INTRODUCTION



Chapter 3

Fundamentals

Now that you know what you need to get started, let’s gen-
tly walk through an overview of the fundamental ideas and top-
ics that we’ll be engaging and experimenting with.

The order of topics may seem strange at first but things
should make sense as you move on.

3.1 Communication
If we want two computers to communicate, there needs to be
some protocol that they both speak.

If we want two computers to communicate, there needs to
be a physical medium over which they can communicate.

Almost all computers and their peripherals communicate over
USB these days. But when it comes to getting into the nitty-
gritty details, you will often find UART humbly serving the
same purpose it has for decades of computing. Fortunately
for us, almost every embedded system these days supports UART;
this includes the Raspberry Spy.

We’ll be using our UTUB to install a new OS on our Rasp-
berry Spy over a serial interface (UART). The program that
we’ll be using to do this serial communication is picocom(1).

Why bother with this anachronistic technology? Glad you
asked! Once you know how to operate something like a UTUB
and a program like picocom(1), you can “break into” several

17

https://en.wikipedia.org/wiki/Universal_asynchronous_receiver-transmitter
https://github.com/npat-efault/picocom


18 CHAPTER 3. FUNDAMENTALS

devices and modify them how you wish. Routers, motherboards,
embedded systems, etc. all tend to have some sort of serial
interface on them. Once you learn the basics, you are equipped
to liberate yourself and gain more computing freedom.

But wait. Isn’t all this embedded stuff way too diffi-
cult and only for “experts”? HOGWASH! You can do it too. Don’t
fall for the propaganda. You are perfectly capable of do-
ing a bit of serial hacking to liberate your devices. You
paid for them, after all. You should be able to do whatever
you want with them (and you will). Onwards!

3.2 Kernel Ring Buffer
What on earth is a “kernel ring buffer” (KRB)? Ever heard of
dmesg(1)? dmesg(1) is what you use to read the KRB. Not so
scary now. Is it?

Why is the KRB important? Well: when you plug in (or out)
a device, you can see the messages show up in the KRB. If you
learn how to pay attention to the KRB, when you are working
with hardware, you will become a lot better at trouble-shooting
your own problems. Take strings you don’t understand and plop
them into your favourite search engine; try the apropos(1)
command as well.

As we progress with our project, we’ll see how to lever-
age dmesg(1) to our advantage. Learning proper use of dmesg(1)
is an essential skill if you want to improve and maintain your
computing freedom; dmesg(1) allows you to demystify the in-
ner workings of your computer and get clues on how to fix prob-
lems yourself.

3.3 Drivers
Say you plug in your mouse or keyboard into your computer;
or even plug them out. The software responsible for trans-
lating the physical signals from the mouse or keyboard, to
the intermediary physical devices, to the more abstract lay-
ers of your operating system (like stuff you see on the screen)
is called the kernel; this is the “Linux” part of GNU/Linux.

The kernel is the layer of software that sits between the



3.3. DRIVERS 19

physical hardware and the more abstract levels of software
that gives you an “operating system”. When you plug in or
out your keyboard or mouse, the Kernel has programs which recog-
nise those types of devices and then loads the appropriate
software required to use those physical devices; such soft-
ware are called “device drivers”.

All of the above is a bit vague. Let’s take a look at what
this looks like in practice; I’m going to plug out and plug
back in my mouse while staring at dmesg(1):

1 # dmesg --human --follow
2 ...
3 [Feb19 17:26] usb 7-4: USB disconnect, device number 2
4 [ +25.036175] usb 7-4: new low-speed USB device number

4 using ohci-pci↪→

5 [ +0.193047] usb 7-4: New USB device found,
idVendor=0461, idProduct=4d81, bcdDevice= 2.00↪→

6 [ +0.000006] usb 7-4: New USB device strings: Mfr=0,
Product=2, SerialNumber=0↪→

7 [ +0.000004] usb 7-4: Product: USB Optical Mouse
8 [ +0.007570] input: USB Optical Mouse as

/devices/pci0000:00/0000:00:16.0/usb7/7-4/7-4:1.0/0 c

003:0461:4D81.0005/input/input18
↪→

↪→

9 [ +0.000303] hid-generic 0003:0461:4D81.0005:
input,hidraw3: USB HID v1.11 Mouse [USB Optical
Mouse] on usb-0000:00:16.0-4/input0

↪→

↪→

We’ll briefly analyse this output and introduce a few im-
portant tools in the process.

The first thing to note is this string “using ohci-pci”.
It’s time to bring in the Linux-specific tool modinfo(8); let’s
take a look at what we’re dealing with:

1 $ modinfo ohci_pci
2 name: ohci_pci
3 filename: (builtin)
4 softdep: pre: ehci_pci
5 license: GPL



20 CHAPTER 3. FUNDAMENTALS

6 file: drivers/usb/host/ohci-pci
7 description: OHCI PCI platform driver

That output is quite self-explanatory. We see the name
of the kernel module; we see that its a builtin kernel mod-
ule (which means it’s compiled into the kernel). “softdep”
stands for soft dependency. We see that the licese is GPL.
We see the location in the kernel source tree this kernel mod-
ule resides. And, finally, we see a short description of the
kernel module.

I hope, at the point, you’ve realised that “kernel mod-
ule” is synonymous with “driver”. See? Not that complicated.

So what does this have to do with our USB mouse? Well:
when it comes to interfaces, there’s usually a few things that
sit between your device and the userspace of your operating
system. I’ll leave it as a research project for you to fig-
ure out what “HCI”, “OHCI”, “EHCI”, “PCI”, etc. mean.

The next crucial bit of driver information here is the “hid-
generic” part; find out what this kernel module does with mod-
info(8).

The next thing I want you to do is have a look at the out-
put of the Linux-specific tool lsmod(8); Note the column head-
ers. grep(1) through the lsmod(8) output for the following
strings:

• usbhid

• hid_generic

• hid

The “USB HID v1.11 Mouse” from our dmesg(1) output should
give us a good idea of what’s going on here. Don’t know what
“USB HID” means? Look it up. Find out what the above ker-
nel modules do, from the stuff you’ve already learned so far.

Let’s take a look at some sample lsmod(8) output:

1 $ cat <(lsmod | head -n 1) <(lsmod | grep hid)
2 Module Size Used by



3.4. OPERATING SYSTEMS 21

3 mac_hid 16384 0
4 hid_generic 16384 0
5 usbhid 57344 0
6 hid 135168 2 usbhid,hid_generic

You’ve now got a bit of background knowledge to make sense
of what’s going on when you plug things in and out of your
GNU/Linux unit.

3.4 Operating Systems
We’re going to be a bit adventurous with our choice of OS to
put on the Raspberry Spy. We’re going to go with NetBSD; this
is a great OS for embedded systems and one you should be fa-
miliar with if you plan on doing any embedded work.

NetBSD is an OS with its own kernel and userspace. Thus,
NetBSD runs the NetBSD kernel and NetBSD userspace utilities;
this is in contrast to the Linux kernel and GNU userspace (GNU/Linux)1.

NetBSD is quite a beginner-friendly BSD because it has am-
ple documentation; the fact that NetBSD has the primary fo-
cus of portability also means you can learn a great deal about
portability from several perspectives.

A side note here. Avoid usage of package managers. They
are bad for your freedom; to most people, package managers
are entirely opaque systems that turns the computer opera-
tor into a mere consumer. Learn how to build your software
from source code. This way you see all the dependencies2.

1Technically, there’s also different bootloaders to worry about but
we’re going to ignore bootloaders for now as we have enough to deal
with. It’s also very unfair to GNU to just call it “userspace”; GNU
gave the world things like the GNU Compiler Collection and GNU Auto-
tools - things without which much of software today wouldn’t exist;
there seems to be mass amnesia in the computing world around this,
whether it be deliberate or not. And guess what? GNU was about free-
dom, first and foremost.

2i.e., how much junk the software you want to use depends on. It’s a
great way to filter out bloatware. You will also be able to learn to
spot “common denominator” programs software of a certain type depends
on. Often, this will enable you to refine your criteria for a program
in order to find exactly what you need - opposed to what you think you
need (or what others make you think you need).



22 CHAPTER 3. FUNDAMENTALS

The opaque package manager is exactly how the Raspberry
Spy Foundation smuggled in spyware into the Raspberry Spy.
If you build all your programs from source code, you would
be less vulnerable to these espionage tactics3.

You should be the operator of your computer, not a “user”.
A “user” is effectively being “used” because they are treated
like stupid consumers that get dictated to by other people.
Don’t fall for this “user” trap. Be the operator of your com-
puter; take back control; education is the true path to com-
puting freedom.

Note that a lot of these operating systems we’re talking
about follow some version of the POSIX specification (with
varying degrees of compliance).

3.5 Special Files
It’s important to understand how special files relate to de-
vice drivers. What’s a special file? Glad you asked.

Let’s take a look at our friend dmesg(1) as we plug in our
UTUB:

1 [Feb22 12:13] usb 7-1: new full-speed USB device number
3 using ohci-pci↪→

2 [ +0.202882] usb 7-1: New USB device found,
idVendor=10c4, idProduct=ea60, bcdDevice= 1.00↪→

3 [ +0.000006] usb 7-1: New USB device strings: Mfr=1,
Product=2, SerialNumber=3↪→

4 [ +0.000003] usb 7-1: Product: CP2104 USB to UART
Bridge Controller↪→

5 [ +0.000003] usb 7-1: Manufacturer: Silicon Labs
6 [ +0.000003] usb 7-1: SerialNumber: 010C48B4
7 [ +0.024088] usbcore: registered new interface driver

usbserial_generic↪→

8 [ +0.000010] usbserial: USB Serial support registered
for generic↪→

3However, don’t think you’re entirely immune, if you compile every-
thing from source. Much has been infiltrated at the source code level.



3.5. SPECIAL FILES 23

9 [ +0.003272] usbcore: registered new interface driver
cp210x↪→

10 [ +0.000025] usbserial: USB Serial support registered
for cp210x↪→

11 [ +0.000081] cp210x 7-1:1.0: cp210x converter detected
12 [ +0.010528] usb 7-1: cp210x converter now attached to

ttyUSB0↪→

Bit of a mouthful. Let’s break it down into pieces that
we can actually digest:

• Take a look at the Linux kernel modules usbcore, usbse-
rial, and cp210x with modinfo(8). Not so scary now. Is
it?

• Next, have a look at the line “usb 7-1: cp210x converter
now attached to ttyUSB0”. You should understand all the
lines leading up to this one; however, we need to do a
bit of digging to find out what this whole “ttyUSB0” busi-
ness is about. We’ll look into some other helpful things
in the process.

Here we have a special file called ttyUSB0; So uh where
is this file? Let’s see:

1 $ find / -name "ttyUSB0" 2> /dev/null
2 /dev/ttyUSB0
3 /sys/class/tty/ttyUSB0
4 /sys/devices/pci0000:00/0000:00:16.0/usb7/7-1/7-1:1.0/t c

tyUSB0↪→

5 /sys/devices/pci0000:00/0000:00:16.0/usb7/7-1/7-1:1.0/t c

tyUSB0/tty/ttyUSB0↪→

6 /sys/bus/usb-serial/devices/ttyUSB0
7 /sys/bus/usb-serial/drivers/cp210x/ttyUSB0

The path we really want here is “/dev/ttyUSB0”4. Time to
do a quick check:

4The other paths are just as interesting. See Appendix B for details
on the specifics.



24 CHAPTER 3. FUNDAMENTALS

1 $ ls -al /dev/ttyUSB0
2 crw-rw---- 1 root dialout 188, 0 Feb 22 12:13

/dev/ttyUSB0↪→

The “c” in “crw-rw--” tells us that this is a character
file. The “188, 0” tells us that the “major” and “minor” num-
ber, respectively, of this special “character file”. These
files are created with mknod(1). The following can be a use-
ful pointer, when you are lost:

1 $ file --mime /dev/ttyUSB0
2 /dev/ttyUSB0: inode/chardevice; charset=binary

Good stuff. We’re getting somewhere. To find a full list
of what these major and minor numbers refer to, we can have
a look in the Linux kernel source tree:

1 $ less linux/Documentation/admin-guide/devices.txt
2 ...
3 188 char USB serial converters
4 0 = /dev/ttyUSB0 First USB

serial converter↪→

5 1 = /dev/ttyUSB1 Second USB
serial converter↪→

6 ...
7 ...

That’s that part demystified. Isn’t learning great? Now
you know where to get the right numbers if you want to use
mknod(1) manually on GNU/Linux systems5.

Now what does all of this mean? We essentially have “cp210x”
which is a discrete Linux kernel module; this Linux kernel
module is then “attached” to the special file ttyUSB0; it’s
this special file ttyUSB0 that the program picocom(1) will
be attached to, in order to perform serial communications.

5A skill every GNU/Linux operator should have.



3.5. SPECIAL FILES 25

You can also see where the different parameters like “id-
Vendor” and “idProduct” come from by taking a look at the ap-
propriate path in the Linux kernel source tree:

1 $ find ./ -regex ".*cp210x.*"
2 ./drivers/usb/serial/cp210x.c
3 $ less drivers/usb/serial/cp210x.c
4 ...
5 { USB_DEVICE(0x10C4, 0xEA60) }, /* Silicon Labs

factory default */↪→

6 ...

On GNU/Linux systems, you should also take a look at the
path /usr/share/misc/usd.ids:

1 $ less /usr/share/misc/usb.ids
2 ...
3 10c4 Silicon Labs
4 ...
5 ea60 CP210x UART Bridge
6 ...

Now let’s have a look at what it looks like when we pull
out our UTUB:

1 $ dmesg --human --follow
2 ...
3 [Feb22 15:45] usb 7-1: USB disconnect, device number 3
4 [ +0.000384] cp210x ttyUSB0: cp210x converter now

disconnected from ttyUSB0↪→

5 [ +0.000164] cp210x 7-1:1.0: device disconnected

There you have it! You should understand what’s going on
in that output, with your new knowledge of Linux kernel in-
ternals. Remember, tools like lsmod(8), modinfo(8), and dmesg(1)
are the first things you should look at when you plug things
in and out of your GNU/Linux box. This stuff is incredibly



26 CHAPTER 3. FUNDAMENTALS

simple, if you know where to look; now you know where to look!
No need to be afraid.

Finally, we have the commands:

1 $ lscpi -k

and

1 $ lsusb -t

You now know enough to figure out yourself what you get
from lspci -k and lsusb -t6.

You now have a healthy dose of knowledge injected into your
grey matter to enable you to handle special files on GNU/Linux
systems7.

6Don’t know what the options mean? RTFM.
7Some of this special file handling knowledge applies to other POSIX-

like operating systems as well, with minor details changed.



Chapter 4

Doing The Task

We’ve now covered enough ground to make the installation of
NetBSD on our Raspberry Spy (over our UTUB) a relatively pain-
less matter.

Let’s go through the process in little steps.

4.1 Preparing The Boot Media
I’m going to grab the appropriate NetBSD image by taking hints
from the following:

• NetBSD/evbarm on Raspberry Pi tells us everything we need
to know to pick the right image. All the sections here
related to booting are worth reading at least once. Also
read sections about consoles and serial consoles at least
once.

• Raspberry Pi boot modes is useful if you want to dig deeper
into the booting mechanisms of the Raspberry Spy. USB
mass storage boot is particularly useful for booting off
USB. Trust me, you don’t want to muck around with SD cards;
they’re a nightmare.

• NetBSD/evbarm can be referenced for general information
about NetBSD on ARM boards.

The above links should give you a good idea of what’s go-
ing on and what needs to be done with regards to putting a
NetBSD on a boot media that goes into a Raspberry Spy.

Let’s go through a concrete example.

27

https://wiki.netbsd.org/ports/evbarm/raspberry_pi/
https://www.raspberrypi.org/documentation/hardware/raspberrypi/bootmodes/
https://www.raspberrypi.org/documentation/hardware/raspberrypi/bootmodes/msd.md
https://www.raspberrypi.org/documentation/hardware/raspberrypi/bootmodes/msd.md
https://wiki.netbsd.org/ports/evbarm/


28 CHAPTER 4. DOING THE TASK

My Raspberry Spy is of the model “3 B+” variety so I’m deal-
ing with an ARM64 CPU architecture. We’ll follow along the
instructions outlined in Installation procedure for NetBSD/evbarm;
pay close attention to the section “NetBSD/evbarm subdirec-
tory structure”; I follow these instructions as I explore In-
dex of pub/NetBSD/NetBSD-9.1/evbarm-aarch64/.

I grab the appropriate image like so:

1 $ mkdir ~/Downloads/netbsd
2 $ cd ~/Downloads/minted
3 $ wget https://cdn.netbsd.org/pub/NetBSD/NetBSD-9.1/evb c

arm-aarch64/binary/gzimg/arm64.img.gz↪→

Now that we’ve got the image, we can write it to our boot
media. I’m going to assume you have an appropriate reader
already plugged into your GNU/Linux box. I’ve got my USB thumb
drive as “/dev/sdg” on my system. Use the right block de-
vice file on your system1. We base our procedure along the
lines of “Installation for ARMv7 and AArch64 devices with U-
Boot” section from Installation procedure for NetBSD/evbarm:

1 $ gzip --decompress --keep arm64.img.gz
2 # dd if=arm64.img of=/dev/sdg bs=1M conv=sync

status=progress↪→

3 $ lsblk -f | grep sdg

We’re going to ignore the minutiae of writing to block de-
vices, bootloaders, and other adjacent topics related to the
utilities we just used; that’s left for another time. We care
about learning how to use a serial console in this project
so we must stay focused on our primary target.

We’re going to have a look at how to make a serial install
possible via some editing of the “cmdline.txt” file that now
resides in the boot media (on the boot partition which is of
type “vfat”):

1The command lsblk -f should help you out here. Don’t wipe the wrong
device by accident.

https://cdn.netbsd.org/pub/NetBSD/NetBSD-9.1/evbarm-aarch64/INSTALL.html
https://cdn.netbsd.org/pub/NetBSD/NetBSD-9.1/evbarm-aarch64/
https://cdn.netbsd.org/pub/NetBSD/NetBSD-9.1/evbarm-aarch64/
https://cdn.netbsd.org/pub/NetBSD/NetBSD-9.1/evbarm-aarch64/INSTALL.html


4.1. PREPARING THE BOOT MEDIA 29

1 # mkdir /media/netbsd_image
2 # mount /dev/sdg1 /media/netbsd_image
3 # grep "console" < cmdline.txt
4 # root=ld0a console=fb
5 # grep "enable_uart" < config.txt
6 # enable_uart=1

The “console=fb” part is to get out OS image to use the
HDMI output. We will get rid of that string from the file
“cmdline.txt”. Who needs that anyway? One way to do it2:

1 # ed cmdline.txt
2 21
3 ,p
4 root=ld0a console=fb
5 1
6 root=ld0a console=fb
7 s/console=fb//
8 ,p
9 root=ld0a

10 wq
11 11
12 # echo ",p" | ed cmdline.txt
13 11
14 root=ld0a

Remember to check your edits!

We also ensure that “enable_uart=1” is set in the file “config.txt”:

1 # echo ",p" | ed config.txt
2 82
3 arm_64bit=1

2If you use another text editor, that’s fine. You really should
learn ed(1) at some point though, especially if you want to get into
embedded systems.



30 CHAPTER 4. DOING THE TASK

4 kernel=netbsd.img
5 kernel_address=0x200000
6 enable_uart=1
7 force_turbo=0

Everything looks good! Additional useful information on
the Raspberry Spy UART can be found in UART configuration.
Pretty self-explanatory. That wasn’t so hard. Was it?

Note that the following links document the files we’ve been
messing around with:

• The Kernel Command Line

• config.txt

It’s a good idea to back up the state of your image, at
this point3. We can now safely unmount our boot media and
get on with the project:

1 # cd ~
2 # umount /media/netbsd_image

We change directory, before we unmount, so that we don’t
get any “device busy” errors.

We’ve now got our boot media ready. Onwards!

4.2 Connecting Physical Components
Before you power up your UTUB, you should really check that
the pins are working properly. The very basic test you should
do is to check that the right voltage is being supplied. Check
out Appendix C.

The pins on our UTUB and Raspberry Spy that we’re inter-
ested are the following:

3At least keep track of the files that you tweaked. If you use some
sort of version-control-system, you get bonus points.

https://www.raspberrypi.org/documentation/configuration/uart.md
https://www.raspberrypi.org/documentation/configuration/cmdline-txt.md
https://www.raspberrypi.org/documentation/configuration/config-txt/


4.2. CONNECTING PHYSICAL COMPONENTS 31

• Raspberry Spy: Pin6 (Ground), Pin8 (GPIO14, TXD), Pin10
(GPIO15, RXD). You can find the layout in the official
GPIO page.

• UTUB: I’ve got a CP2104 UTUB so I’ve got to only worry
about the pins marked TX, RX, and GND. I have other pins
on the module but they’re not relevant for this task.

We won’t be using any of the voltage pins on the boards
because it’s more prone to errors. Just use the USB power
supply that comes with your Raspberry Spy.

Don’t plug anything into power for the following sequence.
Connect the jump-wires like so:

• Ground on UTUB to Ground (Pin6) on Raspberry Spy.

• TX on UTUB to RX (Pin10) on Raspbery Spy.

• RX on UTUB to TX on (Pin8) Raspberry Spy.

Don’t make the rookie mistake of matching TX with TX and
RX with RX; TX always goes to RX and RX always goes to TX.
Keep this in mind, always, when working with UARTs. Colour-
coding your jump-wires helps.

We’ll just go over the order of attaching the stuff to do
with power on our devices:

• Attach the USB power adapter to the Raspberry Pi with-
out plugging the adapter into the power outlet.

• Attach the UTUB to your GNU/Linux box.

• Attach your USB power adapter to your power outlet.

The logic for the above procedure is that you can ensure
that your serial interface is up and running before you start
getting input from your Raspberry Spy.

https://www.raspberrypi.org/documentation/usage/gpio/
https://www.raspberrypi.org/documentation/usage/gpio/


32 CHAPTER 4. DOING THE TASK

4.3 Using Picocom
Using picocom(1) is simple. All we need to do is select the
correct baud rate and give the right device file as a param-
eter to picocom(1).

I’ll give you an extract from the manual page to enlighten
you:

1 In effect, picocom is not an "emulator" per-se. It is a
2 simple program that opens, configures, manages a serial
3 port (tty device) and its settings, and connects to it
4 the terminal emulator you are, most likely, already

using↪→

5 (the terminal window application, xterm, rxvt, system
6 console, etc).
7

8 When picocom starts it opens the tty (serial port)
9 given as its non-option argument. Unless the

10 --noinit option is given, it configures the port to
11 the settings specified by the option-arguments (or
12 to some default settings), and sets it to "raw"
13 mode. If --noinit is given, the initialization and
14 configuration is skipped; the port is just opened.
15 Following this, if standard input is a tty, picocom
16 sets the tty to raw mode. Then it goes in a loop
17 where it listens for input from stdin, or from the
18 serial port. Input from the serial port is copied
19 to the standard output while input from the standard
20 input is copied to the serial port. Picocom also
21 scans its input stream for a user-specified control
22 character, called the escape character (being by
23 default C-a). If the escape character is seen, then
24 instead of sending it to the serial-device, the
25 program enters "command mode" and waits for the next
26 character (which is called the "function
27 character"). Depending on the value of the function
28 character, picocom performs one of the operations
29 described in the COMMANDS section below.



4.3. USING PICOCOM 33

We use “C-a C-x” (Ctrl+a followed by Ctrl+x)4 to tell pic-
ocom(1) to exit; for more, RTFM; in particular, pay close at-
tention to the “COMMANDS” section.

Make sure you’ve set up all the physical connections, as
advised. It’s time to attach our UTUB to our GNU/Linux box
and then make sure we invoke picocom(1) correctly:

1 # picocom --baud 115200 /dev/ttyUSB0
2 picocom v3.1
3

4 port is : /dev/ttyUSB0
5 flowcontrol : none
6 baudrate is : 115200
7 parity is : none
8 databits are : 8
9 stopbits are : 1

10 escape is : C-a
11 local echo is : no
12 noinit is : no
13 noreset is : no
14 hangup is : no
15 nolock is : no
16 send_cmd is : sz -vv
17 receive_cmd is : rz -vv -E
18 imap is :
19 omap is :
20 emap is : crcrlf,delbs,
21 logfile is : none
22 initstring : none
23 exit_after is : not set
24 exit is : no
25

26 Type [C-a] [C-h] to see available commands
27 Terminal ready

4I don’t know why the manual doesn’t bother to explicitly mention
that these are GNU-Emacs-style key sequences.



34 CHAPTER 4. DOING THE TASK

It really is that simple. You’ve now got a serial ter-
minal ready and listening.

4.4 OS Installation
Now that you’ve got a serial terminal operational, all we have
to do to install NetBSD on the Raspberry Spy is to plug the
USB power adapter into the power outlet. Keep a close eye
on what goes on in the output of your serial terminal:

1 ...
2 [ 7.4246937] root device:
3 [ 11.6252523] use one of: mue0 sd0[a-p] ddb halt reboot
4 [ 11.6252523] root device: sd0
5 [ 13.9755661] dump device (default sd0b):
6 [ 15.7257992] file system (default generic):
7 ...

You should be promted to pick a root device. I pick “sd0”
as it’s the first ’disk’ offered by NetBSD (which can only
be my boot media)5. I go for the suggested defaults, for ev-
erything else. No need to overcomplicate things, at this point.

You will probably see your Raspberry Spy reboot once or
twice during the OS install process. Just pass the same pa-
rameters for the boot device, and you should be good to go.

Eventually, you should be met with the following:

1 ...
2

3 NetBSD/evbarm (arm64) (constty)
4

5 ...

5See the NetBSD sd(4) manpage for details.



4.4. OS INSTALLATION 35

6

7 login:

If you login as “root”, you should have a nice login shell
presented to you.

And we are done! You’ve successfully done some tinker-
ing over a serial terminal. That wasn’t so hard. Was it?
You can shutdown your device (halt the OS) like so:

1 # shutdown -p now
2 ...
3 [ 910.5814809] The operating system has halted.
4 [ 910.5814809] Please press any key to reboot.

You can now disconnect the power supply from your Rasp-
berry Spy. Then just send “C-a C-x” to picocom(1); after which,
you should see:

1 ...
2 Terminating...
3 Thanks for using picocom
4 #

Welcome to the world of serial terminals; hack your heart
out!



36 CHAPTER 4. DOING THE TASK



Chapter 5

Thanks

We’d like to take the opportunity to thank you, the reader.
We believe everyone deserves a computing education; however,
the topics of computing freedom and how computing affects our
basic human rights are neglected in computing education to-
day; at E2EOPS PRESS we strive to change this. Our goal is
to inform, educate, and inspire. Computing is also a lot of
fun! We want everyone to experience the joys of computing.
We hope you enjoyed this issue of our periodical as much as
we enjoyed bringing it to you!

Our work requires research, equipment, and infrastructure
to deliver. We strive for the best quality in all we do. If
you would like to support us, there are several ways you can
do so. Any support we get from you enables us to bring you
the best we possibly can.

We distribute all our periodicals via peer-to-peer tech-
nology. There are things we publish that some people don’t
want out in the open. Thus, if you can contribute to the peer-
to-peer sharing, you would be helping us out immensely!

If you would like to support us by making a cash donation,
we have a Paypal account that you can send donations to:

• https://www.paypal.com/donate?hosted_button_id=B5VPZJBKLL2S6

For those that like to use QR codes, you can use the fol-
lowing QR code to donate to our Paypal:

37

https://www.paypal.com/donate?hosted_button_id=B5VPZJBKLL2S6


38 CHAPTER 5. THANKS

If you’d like to donate in some other way, you can send
an email to

donations@e2eops.io

and have a chat with us about it.

For encrypted communications, you can use the OpenPGP Key
provided in chapter 6.

And, as always, happy hacking!

mailto:donations@e2eops.io


Chapter 6

OpenPGP Key

At E2EOPS PRESS, we take your privacy seriously. If you want
to send us an encrypted message, you can do so with the fol-
lowing OpenPGP key:

1 -----BEGIN PGP PUBLIC KEY BLOCK-----
2

3 mQGNBF7JMNYBDACeCfa+NpFSOUOyIKqdZdtIjEZCaLzBKQmnqLJo/5BZZiCrGK8+
4 MYUfBz6iiEqEJf7N0R6Kg/esyIEy35uYdiLr66fg/sEXHk5eW/9Hanex/Igk9nmg
5 1+eGo1sk/MQh7lUNydqOHVokhjcPHleUGiJE/F0MjDvs/xTN1HYf1uhmJOZbpL/D
6 oTcTssL1BB2b95QfuUViX7I/+Xoe4VSaxdVlVGGCSI8jAPqb+0PYX6N2yHllFaRI
7 8D4cQkKpP5z2Y9m65ALWsR0M6GBUIeYe4QzfBVwuPg7TAiSpZWDC3vPIWFsC1zbL
8 NT4y6bxjv9gE0S3GVXZC/bTHuVL3FNrStnMFX0z8E4c19vyo9TyTxXLKC7Qy/dWJ
9 Nf+3tbgNQ7yR8MBwciyQho9MltrIFTz+JXZj7xCM0QiYgTo4rBl9eczaGLZwlOJn

10 sybs3Ia0ZTfm5yQAQ3eJ4yKKkiCjADF6fq6AVgV0D36wgBiZnVa+zbSteamUM7L8
11 JN4rzqfm587d+/0AEQEAAbQgR2F2aW4gTC4gUmViZWlybyA8Z2xyQGUyZW9wcy5p
12 bz6JAdEEEwEKADsCGwMCHgECF4AFCwkIBwIGFQoJCAsCBBYCAwEWIQTHhRt/mdsE
13 uRCTt6QUP5lU/9Mq/wUCXyPcLAIZAQAKCRAUP5lU/9Mq/xtpC/9nEcxWrB5e3W1o
14 Xl8W9uumnwG5o2ZUYfHtQ+QVpkowdQgEFPLTBicWRPnb61eaT/60hkhH68Gb1oVZ
15 BHHN3YNF9qqQHqOT1iAuP0nidkHXUaz4Bbl0wR8brvY2aJO4l03sOWztQHkAoo+u
16 wNohHM1lwqKYN+HRWm+JyTRxw/YHkYI1Rz1aN9hUNTax1HqAm5fSq+R/VKyUZ9tI
17 2D93p2PK+c1SEJS1goBnlJu4HW2T7NA7oUboKG0J4h2yBV6WtSgskFEWqYEBzvxw
18 ZaWzooOnJRPc+CibhRuH9VJvegRCkwZcNuZfHBKkh+d30LaJJlpifnu9ADs0PkXx
19 HUsHlgMjUbzjztFEBmAjS8PvKOG2nJxcv362749/M6vI7KP7ktf4i+3wZLe8BC5y
20 hSAAQtLUBC/IratA+4NSI8lxDlNB+rrFTXzYTVGscJWlACCK4l0xaXNC0OBcRosH
21 oFMgSogrXrQ2SsSu8oeVOjx/HOd8tThrCKd2nd40iG5Z3fftzP+5AY0EXskw1gEM
22 ANpbLPGSE9gjT8aAkcK0gIhNwTwR/X9T1YCKViiOYALCzPfGYMQqATSe/J7o/ysO
23 +lAB0B3NExdIbwh3knhoEsXdx9zNz18q827aCdLJVuq9kizXoCkWchJ0QjgacvNe
24 0jGZ+o3ULIMmnWztGzNixZaAiwzalWghFuiX4pG0su8TYAN1T6DGvdb+F1rx0xo8
25 tb3T8RaO0VZyji3zBBNXD1ECU6dmi0AJ0zD0S5iRIXIn+QfRR2oJu9ZSR6En7PS1
26 b4bhJ2OnBE4ZQ3mS4aHPaeIWbeCeq8EuaVQNyv5jT3wD18DIRigOxl9XJFy1IDO+
27 A45hz9FwxULH1QH5bZXRmkYfcxkLMqoMci0+8XxobpmILjkSHeAo4PR8KTHpNUXf
28 I7rJLpufYRTHf5votrJmgbea5bfnAlSoOXMlN2XZ9oJimOTfyzItCSwb0pkghnW0

39



40 CHAPTER 6. OPENPGP KEY

29 Hyo3kd5RbDcZrd6RSSVWo/41gr8SXatlkpbnEYjktFGe2Nxls6qZAgA/lqKrS9ti
30 7wARAQABiQG8BBgBCgAmFiEEx4Ubf5nbBLkQk7ekFD+ZVP/TKv8FAl7JMNYCGwwF
31 CQPCZwAACgkQFD+ZVP/TKv9XAwv9Heor5YuZalOcXXiGCrqYNHuQJLbDvUpTK6wI
32 t9peV4t6E8oiqb0/0ezLGQSlP8RkBKUkhslVn5M6cDIxdCAlZxUIOjF1tJyHrTua
33 wEayHO5q84tixa00+x2/mmaDy0ddZXc4gITLgZjN4J3e9GUww4N3TUVJTZDPF+mP
34 eFd2HlGj3AHLtNEfsEw4HvYNNzexnom66gdDrrCIBxWRgUD2aRQKxQOquFQt2zYS
35 dgOXVS0eyaN81uqFHVh+tvyBKkrK8D/recaPcCXAFSv9UUcQA6jEFdC9WEjgHD7J
36 nRrCwOGBTZ7IvYO5+rpyh/w8k6eZYhUm3UdXYuPsxaCsSL+OW46DBP0C5sKrhxZK
37 thZOhll4ZYrfX1Vv4awBAB6iMZ0i+i39AQPmpvUviFGUfLkHEEsarHgPDchaOv1p
38 0xa11jUxU5nkqfiQj5A4h4TMP0q9tGdf1puxRZqwp8T0Jc9uQAm6wUMaaaugiXn+
39 BQfF5XIfOiXZx9DThhqYwO4WztdEuQINBF87rdYBEAC66OFgJa3p9d6Ets5A3NVm
40 XxXkCBmgIg1HG44bmKz3o2xudRP6o3bbmVI06cmfGAVmKJ0voAVsgHMsTg30iZb3
41 D/X9iRYTB/1suyYIgP9cRxltLLMTL4LycmrCRCnTJSMThA1V2d5brmmrWcOPmqnT
42 CdbOjUD5OWzGsfIkP0t+Ef4v94j574WAvpGYd7Wf5o30JKNfdOjdLOVFdp6lV9mM
43 FxebC1lZ6uRSeL77/XZJC4ZQ8TzhgsdgnE4M1sKvaDO+DTS3pu7+Dh+ORFQ9TQDP
44 ZuMBpln3UBa1evVR8bF9SgqjGo2Al8K590xGNJEHzj+BGqEKjOVN05uMoplByMdZ
45 pD2lRMdqgIqVXiNtBSBhv1oGQhu5fxW11Xv4Kh5BzuOMLS/0KT2cdlk06eCgWZqT
46 /IM5ipKYpJJgtkJ/0sU+hLq+jilAr3ZhmkxCim+9uYOZ93ypy7QiW8ldbsGEDh5S
47 KcU+qWGNEMHhNwuHY9ChO1hcWi/q5/mZTKXG60/q6RZRI2QxbuKsX3c8GbEea2jU
48 Q+v4zFp/x7G1aPRTRtqOssvBtIikBiKWBEOBwYwqpEjD6IfmWVh8wlJZx/tcBRGF
49 0FGpyieGAFINaQIjKURm7bHkn4bQwIZkmbAssA6ZHcl9u6/u60155K4ifuf7ChyK
50 8H5n6vJq4AUxQkA8kADvnwARAQABiQG8BBgBCgAmFiEEx4Ubf5nbBLkQk7ekFD+Z
51 VP/TKv8FAl87rdYCGyAFCQHhM4AACgkQFD+ZVP/TKv9Fwgv+P20Qu7USOJfaUVN4
52 I52GS6R8veww4aKY16ts3XlIUl3mqbH3KoB1T+YKuqoVrNCtGeXVD0AB+BJxxrQS
53 BFtYq4ZgPnSo7NQST6SWbWhzJmpfuhoInGb9l8v0mwD50DrOPjeZcX7TrQN4jWft
54 OJQkKviCYFCu36xa84FUYxTyvA5V4TpWAgPTUVBpf8BrI2Ktw3Wc1THHqcwIszec
55 Mr/mexDfdCa8G78u3rgX4kZPSGFwaGK339eqlb7rMtspkKQPPmm92lYdfV/icbvw
56 7iaMAirgYq72qzkuIV6GMUKsTa/1wkJ54yACaLXS9A3NXDVizErWHam9TG/ce/Ll
57 EPUsrXTesrhqZpaHHNxnfiQOXzocrldvvdYOxBeGfMQY7fftX8GgQwMjMi2kracr
58 hWc1mCSMSCerTWCtRfw0CK4Au6881rAAmXDwvjU586ezv1MdBqVmN7eOeeVVGdM1
59 /+S5QP//oK6MEkAS8y2ZP8A/3iMlYz+SBOUSD0AJ0RZEhkhr
60 =JMTx
61 -----END PGP PUBLIC KEY BLOCK-----



Appendix A

Malicious Hardware

While doing research for this issue, I often ran into USB-
to-UART bridges of the “FTDI” variety. Upon further digging,
an ugly bit of history surfaced. The FTDI modules have a rep-
utation for sabotaging people’s hardware.

Sadly, we live in a world where this sort of thing is the
norm. Pay close attention to the products you buy. You need
to practice vigilance in order to defend your computing free-
dom. Remember, you have control over your wallet. Don’t sup-
port malicious actors, if you have the choice (in this case
you almost certainly do).

41

https://en.wikipedia.org/wiki/FTDI#Driver_controversy


42 APPENDIX A. MALICIOUS HARDWARE



Appendix B

Linux Kernel Source
Tree Analysis

The directory trees rooted at /sys and /proc are mapping of
Linux kernel data structures and interfaces; you can read up
on these in the Linux kernel source tree from:

• linux/Documentation/filesystems/sysfs.rst

• linux/Documentation/filesystems/proc.rst

You don’t have a local, up-to-date, copy of the Linux ker-
nel source tree? You really should. Note that some of this
documentation is hilariously out-of-date; use the git log on
a file to see the last time parts of a file was given an up-
date:

1 $ git log -p filename

This should give you what you need. Since the Linux ker-
nel is developed with Git, it pays dividends to learn at least
the fundamentals of Git.

It’s a frequent occurence that people ask me how to make
sense of the Linux kernel. You need the following prereq-
uisites:

• A familiarity with the C programming language. The syn-
tax is easy to pick up for most people because a lot of
the popular programming languages in use today are based

43



44 APPENDIX B. LINUX KERNEL SOURCE TREE ANALYSIS

on C. Most operating systems today are written in C; the
same goes for embedded systems. If you don’t have a good
grasp of C, you can kiss any hopes on working on this stuff
goodbye. C is not as hard as people make it out to be;
just look at real code and don’t waste your time on point-
less exercises. Start with the smallest real-world pro-
grams you can find - like echo(1); once you get the sim-
ple stuff, get more ambitious and look at more compli-
cated things. The following resource is also invaluable
to the novice C programmer: C reference.

• To make sense of other people’s C code (particularly spaghetti),
you need a good source code tagging system. I recommend
GNU Global because it works well on most Bourne Shells.
Using GNU Global will enable you to look up definitions
for things like functions and structs in C code easily.

• You need to learn GNU Autotools to automate the workflow
of building makefiles and such. The old “./configure &&
make && make install” ritual stems from GNU Autotools.
Learn it and embrace it. You can build truly portable
software once you learn the fundamentals of GNU Autotools.
You won’t understand head nor tail of embedded program-
ming with the Linux kernel (and several other things) un-
less you have a grasp on the rudiments of GNU Autotools.

• Whether you like it or not, Git is an essential part of
Linux kernel development. Without a firm grasp of Git
fundamentals, you won’t get anywhere. While you’re at
it, you should look into the standalone utilities GNU diff
and GNU patch; Git is essentially an abstraction on top
of these tools.

You should now have enough pointers to begin acquiring knowl-
edge about how to make sense of the Linux kernel (and a whole
lot of other things). The aforementioned prerequisites ab-
stract to OS and embedded development and being an effective
operator of your computer. These are the tools you really
need to know to get anywhere.

All of this stuff applies to several other things. Once
you start learning them, you’ll see what I mean. It really
isn’t a lot to take in. Knowledge of this stuff will last
you a lifetime. Don’t fall for the IDE X or framework Y bull-
shit; those are moving targets and are deliberately broken

https://en.cppreference.com/w/c


45

to keep people reliant on the dictators for “support”. Ed-
ucate yourself; it’s the only path to computing freedom. Be-
come an operator; don’t be a mindless consumer.



46 APPENDIX B. LINUX KERNEL SOURCE TREE ANALYSIS



Appendix C

Digital Multimeter
Tests

As always, follow the instructions in the manual of your Dig-
ital Multimeter (DMM). RTFM extra carefully, otherwise you
end up with magic smoke (why you were recommended spares).

There really are only two simple things you need to test
on your UTUB:

• Voltage coming out of the UTUB TX and RX pins.

• Current from the TX and RX pins.

There’s not really much more to be said here. The one bit
of general advice is to use a breadboard and some jump wires,
if you have access to one; crocodile clip test leads for your
DMM also make life easier. Basically, try making sure you
don’t short circuit your UTUB by having DMM test leads too
close to each other.

Make sure the test leads are plugged into the appropri-
ate terminals of your DMM. Always make sure the fuse of a DMM
terminal is sufficient for what you’re measuring.

You can find GPIO voltage specifications of the Raspberry
Spy in the official GPIO guide. Make sure you cross-check
with the right CPU model’s datasheet.

You may end up needing to buy some resistors to get the
right voltage and current. You can find background infor-

47

https://www.raspberrypi.org/documentation/hardware/raspberrypi/gpio/README.md


48 APPENDIX C. DIGITAL MULTIMETER TESTS

mation useful to the novice hardware hacker from the excel-
lent Sparkfun tutorial on pull-up resistors; follow the ap-
propriate links to fill out gaps in your knowledge. However,
most UTUBs are usable out-of-the-box (OOTB) so you shouldn’t
really have much issue here. But it doesn’t hurt (unless you
zap yourself) to get a bit of electronics background knowl-
edge since you’re playing around with wires and electricity!

https://learn.sparkfun.com/tutorials/pull-up-resistors
https://learn.sparkfun.com/tutorials/pull-up-resistors


Index

lsblk -f, 28
sd(4), 34
/dev/ttyUSB0, 23
/proc, 43
/sys, 43
FTDI, 41
apropos(1), 18
cmdline.txt, 29
config.txt, 29
console=fb, 29
cp210x, 23, 24
dmesg(1), 18-20, 22, 25
echo(1), 44
enable_uart=1, 29
grep(1), 20
lsmod(8), 20, 25
lspci -k, 26
lsusb -t, 26
mknod(1), 24
modinfo(8), 19, 20, 23
picocom(1), 17, 24, 32,

33, 35
ttyUSB0, 23, 24
usbcore, 23

usbserial, 23

DMM, 15

EHCI, 20

HCI, 20

idProduct, 25
idVendor, 25

jump wires, 14

kernel ring buffer, 18
KRB, 18

OHCI, 20

PCI, 20

QC, 15

textttmodinfo(8), 25

UART, 17
UTUB, 13, 14

49


	Cover
	Copyright
	Acknowledgements
	Introduction
	Prerequisite Knowledge
	Apparatus

	Fundamentals
	Communication
	Kernel Ring Buffer
	Drivers
	Operating Systems
	Special Files

	Doing The Task
	Preparing The Boot Media
	Connecting Physical Components
	Using Picocom
	OS Installation

	Thanks
	OpenPGP Key
	Malicious Hardware
	Linux Kernel Source Tree Analysis
	Digital Multimeter Tests

