Bonum Certa Men Certa

Help Fight Patent Bullying From Shazam -- Spread This Code!

Gorilla



Summary: This post looks at patent bullying against Free software and it calls for the spreading of source code which Shazam unlawfully tries to remove from the Internet

EARLIER TODAY we wrote about NetApp's threats against ZFS distributors. As one blogger put it:

Enterprise Strategy Group senior analyst Terri McClure wonders why NetApp didn't hit Nexenta with the same letter since Nexenta supplies its ZFS software to multiple storage vendors.

"If NetApp did it would make sense – stop a number of vendors instead of just one. It certainly makes you wonder why they would single out Coraid, people could read into this that NetApp sees Coraid as a threat. Coraid's NAS product is pretty new but the underlying platform has been on the market a while and is solid, at a really aggressive price point," said McClure.

"[NetApp] just spent a couple of hundred dollars in lawyer's fees and took a competitor out of the market. Quick and easy, but a little disappointing, too. At the end of the day, ZFS is open source, and while there is no way to predict how the settlement talks between Oracle and NetApp will turn out, you can't really un-open source ZFS," she said.

There's still no word from NetApp on the matter.


The "patent troll, NTP, is back, buoyed dosh from RIM," says Glyn Moody, who found this new article.

NTP, a patent-holding company best known for prying a settlement of more than $600 million from the maker of the BlackBerry, is now suing the other big names in the smartphone industry: Apple, Google, Microsoft, HTC, LG and Motorola, writes The New York Times’s Steve Lohr.

The suits, filed late Thursday afternoon in federal district court in Richmond, Va., charge that the cellphone e-mail systems of those companies are illegally using NTP’s patented technology.


We mentioned NTP before and so did Patent Troll Tracker. Speaking of trolls, earlier today we wrote about Shazam's patent bullying. That previous post gave just the gist of it and the discussion at Slashdot ought to say more. From the summary:

"The code wasn't even released, and yet Roy van Rijn, a Music & Free Software enthusiast received a C&D from Landmark Digital Services, owners of Shazam, a music service that allows you to find a song, by listening to a part of it. And if that wasn't enough, they want him to take down his blog post (Google Cache) explaining how he did it because it 'may be viewed internationally. As a result, [it] may contribute to someone infringing our patents in any part of the world.'"


Jan Wildeboer calls it "Patent Infringement Madness" and another post Wildeboer says "is (a) a blog entry or (b) patent infringement? I say (a) Shazam says (b)"

Two readers urged us to make a mirror just in case (other people ought to mirror this too, in order to ensure that Shazam will lose hope of successfully censoring perfectly legal Dutch code).

Patents are supposed to encourage publication of ideas, not to suppress them. The following code is not in any way infringing Shazam copyrights.






Creating Shazam in Java





A couple of days ago I encountered this article: How Shazam Works



This got me interested in how a program like Shazam works… And more importantly, how hard is it to program something similar in Java?

About Shazam

Shazam is an application which you can use to analyse/match music. When you install it on your phone, and hold the microphone to some music for about 20 to 30 seconds, it will tell you which song it is.

When I first used it it gave me a magical feeling. “How did it do that!?”. And even today, after using it a lot, it still has a bit of magical feel to it.
Wouldn’t it be great if we can program something of our own that gives that same feeling? That was my goal for the past weekend.

Listen up..!

First things first, get the music sample to analyse we first need to listen to the microphone in our Java application…! This is something I hadn’t done yet in Java, so I had no idea how hard this was going to be.

But it turned out it was very easy:



1 final AudioFormat format = getFormat(); //Fill AudioFormat with the wanted settings


2 DataLine.Info info = new DataLine.Info(TargetDataLine.class, format);
3 final TargetDataLine line = (TargetDataLine) AudioSystem.getLine(info);


4 line.open(format);
5 line.start();

Now we can read the data from the TargetDataLine just like a normal InputStream:



01 // In another thread I start:


02   


03 OutputStream out = new ByteArrayOutputStream();




04 running = true;


05   




06 try {


07     while (running) {




08         int count = line.read(buffer, 0, buffer.length);


09         if (count > 0) {


10             out.write(buffer, 0, count);


11         }


12     }


13     out.close();


14 } catch (IOException e) {


15     System.err.println("I/O problems: " + e);


16     System.exit(-1);


17 }


Using this method it is easy to open the microphone and record all the sounds! The AudioFormat I’m currently using is:



1 private AudioFormat getFormat() {




2     float sampleRate = 44100;


3     int sampleSizeInBits = 8;


4     int channels = 1; //mono




5     boolean signed = true;


6     boolean bigEndian = true;


7     return new AudioFormat(sampleRate, sampleSizeInBits, channels, signed, bigEndian);




8 }

So, now we have the recorded data in a ByteArrayOutputStream, great! Step 1 complete.

Microphone data

The next challenge is analyzing the data, when I outputted the data I received in my byte array I got a long list of numbers, like this:



01 0


02 0


03 1


04 2


05 4




06 7


07 6




08 3


09 -1




10 -2


11 -4




12 -2


13 -5


14 -7


15 -8


16 (etc)

Erhm… yes? This is sound?



To see if the data could be visualized I took the output and placed it in Open Office to generate a line graph:

Ah yes! This kind of looks like ’sound’. It looks like what you see when using for example Windows Sound Recorder.

This data is actually known as time domain. But these numbers are currently basically useless to us… if you read the above article on how Shazam works you’ll read that they use a spectrum analysis instead of direct time domain data.
So the next big question is: How do we transform the current data into a spectrum analysis?

Discrete Fourier transform

To turn our data into usable data we need to apply the so called Discrete Fourier Transformation. This turns the data from time domain into frequency domain.
There is just one problem, if you transform the data into the frequency domain you loose every bit of information regarding time. So you’ll know what the magnitude of all the frequencies are, but you have no idea when they appear.



To solve this we need a sliding window. We take chunks of data (in my case 4096 bytes of data) and transform just this bit of information. Then we know the magnitude of all frequencies that occur during just these 4096 bytes.

Implementing this

Instead of worrying about the Fourier Transformation I googled a bit and found code for the so called FFT (Fast Fourier Transformation). I’m calling this code with the chunks:



01 byte audio[] = out.toByteArray();


02   


03 final int totalSize = audio.length;


04   


05 int amountPossible = totalSize/Harvester.CHUNK_SIZE;


06   


07 //When turning into frequency domain we'll need complex numbers:




08 Complex[][] results = new Complex[amountPossible][];


09   


10 //For all the chunks:


11 for(int times = 0;times < amountPossible; times++) {


12     Complex[] complex = new Complex[Harvester.CHUNK_SIZE];




13     for(int i = 0;i < Harvester.CHUNK_SIZE;i++) {


14         //Put the time domain data into a complex number with imaginary part as 0:


15         complex[i] = new Complex(audio[(times*Harvester.CHUNK_SIZE)+i], 0);




16     }


17     //Perform FFT analysis on the chunk:




18     results[times] = FFT.fft(complex);


19 }


20   


21 //Done!

Now we have a double array containing all chunks as Complex[]. This array contains data about all frequencies. To visualize this data I decided to implement a full spectrum analyzer (just to make sure I got the math right).
To show the data I hacked this together:





01 for(int i = 0; i < results.length; i++) {




02     int freq = 1;


03     for(int line = 1; line < size; line++) {


04         // To get the magnitude of the sound at a given frequency slice


05         // get the abs() from the complex number.


06         // In this case I use Math.log to get a more managable number (used for color)


07         double magnitude = Math.log(results[i][freq].abs()+1);


08   


09         // The more blue in the color the more intensity for a given frequency point:




10         g2d.setColor(new Color(0,(int)magnitude*10,(int)magnitude*20));


11         // Fill:


12         g2d.fillRect(i*blockSizeX, (size-line)*blockSizeY,blockSizeX,blockSizeY);


13   


14         // I used a improviced logarithmic scale and normal scale:




15         if (logModeEnabled && (Math.log10(line) * Math.log10(line)) > 1) {




16             freq += (int) (Math.log10(line) * Math.log10(line));


17         } else {




18             freq++;


19         }




20     }


21 }

Introducing, Aphex Twin

This seems a bit of OT (off-topic), but I’d like to tell you about a electronic musician called Aphex Twin (Richard David James). He makes crazy electronic music… but some songs have an interesting feature. His biggest hit for example, Windowlicker has a spectrogram image in it.
If you look at the song as spectral image it shows a nice spiral. Another song, called ‘Mathematical Equation’ shows the face of Twin! More information can be found here: Bastwood – Aphex Twin’s face.



When running this song against my spectral analyzer I get the following result:

Not perfect, but it seems to be Twin’s face!

Determining the key music points

The next step in Shazam’s algorithm is to determine some key points in the song, save those points as a hash and then try to match on them against their database of over 8 million songs. This is done for speed, the lookup of a hash is O(1) speed. That explains a lot of the awesome performance of Shazam!

Because I wanted to have everything working in one weekend (this is my maximum attention span sadly enough, then I need a new project to work on) I kept my algorithm as simple as possible. And to my surprise it worked.

For each line the in spectrum analysis I take the points with the highest magnitude from certain ranges. In my case: 40-80, 80-120, 120-180, 180-300.





01 //For every line of data:


02   




03 for (int freq = LOWER_LIMIT; freq < UPPER_LIMIT-1; freq++) {




04     //Get the magnitude:


05     double mag = Math.log(results[freq].abs() + 1);


06   


07     //Find out which range we are in:




08     int index = getIndex(freq);


09   




10     //Save the highest magnitude and corresponding frequency:


11     if (mag > highscores[index]) {


12         highscores[index] = mag;


13         recordPoints[index] = freq;


14     }


15 }




16   


17 //Write the points to a file:




18 for (int i = 0; i < AMOUNT_OF_POINTS; i++) {




19     fw.append(recordPoints[i] + "\t");


20 }




21 fw.append("\n");


22   




23 // ... snip ...


24   




25 public static final int[] RANGE = new int[] {40,80,120,180, UPPER_LIMIT+1};


26   


27 //Find out in which range




28 public static int getIndex(int freq) {




29     int i = 0;


30     while(RANGE[i] < freq) i++;


31         return i;


32     }


33 }

When we record a song now, we get a list of numbers such as:





01 33  56  99  121 195


02 30  41  84  146 199


03 33  51  99  133 183




04 33  47  94  137 193




05 32  41  106 161 191


06 33  76  95  123 185


07 40  68  110 134 232




08 30  62  88  125 194


09 34  57  83  121 182


10 34  42  89  123 182




11 33  56  99  121 195




12 30  41  84  146 199


13 33  51  99  133 183


14 33  47  94  137 193




15 32  41  106 161 191


16 33  76  95  123 185


If I record a song and look at it visually it looks like this:


(all the red dots are ‘important points’)

Indexing my own music

With this algorithm in place I decided to index all my 3000 songs. Instead of using the microphone you can just open mp3 files, convert them to the correct format, and read them the same way we did with the microphone, using an AudioInputStream. Converting stereo music into mono-channel audio was a bit trickier then I hoped. Examples can be found online (requires a bit too much code to paste here) have to change the sampling a bit.

Matching!

The most important part of the program is the matching process. Reading Shazams paper they use hashing to get matches and the decide which song was the best match.

Instead of using difficult point-groupings in time I decided to use a line of our data (for example “33, 47, 94, 137″) as one hash: 1370944733
(in my tests using 3 or 4 points works best, but tweaking is difficult, I need to re-index my mp3 every time!)

Example hash-code using 4 points per line:



01 //Using a little bit of error-correction, damping


02 private static final int FUZ_FACTOR = 2;


03   


04 private long hash(String line) {


05     String[] p = line.split("\t");


06     long p1 = Long.parseLong(p[0]);


07     long p2 = Long.parseLong(p[1]);




08     long p3 = Long.parseLong(p[2]);


09     long p4 = Long.parseLong(p[3]);


10     return  (p4-(p4%FUZ_FACTOR)) * 100000000 + (p3-(p3%FUZ_FACTOR)) * 100000 + (p2-(p2%FUZ_FACTOR)) * 100 + (p1-(p1%FUZ_FACTOR));


11 }

Now I create two data sets:

- A list of songs, List<String> (List index is Song-ID, String is songname)
- Database of hashes: Map<Long, List<DataPoint>>



The long in the database of hashes represents the hash itself, and it has a bucket of DataPoints.

A DataPoint looks like:



01 private class DataPoint {


02   


03     private int time;


04     private int songId;




05   


06     public DataPoint(int songId, int time) {


07         this.songId = songId;


08         this.time = time;


09     }


10   




11     public int getTime() {


12         return time;


13     }


14     public int getSongId() {


15         return songId;


16     }


17 }

Now we already have everything in place to do a lookup. First I read all the songs and generate hashes for each point of data. This is put into the hash-database.
The second step is reading the data of the song we need to match. These hashes are retrieved and we look at the matching datapoints.

There is just one problem, for each hash there are some hits, but how do we determine which song is the correct song..? Looking at the amount of matches? No, this doesn’t work…
The most important thing is timing. We must overlap the timing…! But how can we do this if we don’t know where we are in the song? After all, we could just as easily have recorded the final chords of the song.

By looking at the data I discovered something interesting, because we have the following data:

- A hash of the recording
- A matching hash of the possible match
- A song ID of the possible match
- The current time in our own recording
- The time of the hash in the possible match



Now we can substract the current time in our recording (for example, line 34) with the time of the hash-match (for example, line 1352). This difference is stored together with the song ID. Because this offset, this difference, tells us where we possibly could be in the song.
When we have gone through all the hashes from our recording we are left with a lot of song id’s and offsets. The cool thing is, if you have a lot of hashes with matching offsets, you’ve found your song.

The results

For example, when listening to The Kooks – Match Box for just 20 seconds, this is the output of my program:



01 Done loading: 2921 songs


02   


03 Start matching song...




04   


05 Top 20 matches:




06   


07 01: 08_the_kooks_-_match_box.mp3 with 16 matches.




08 02: 04 Racoon - Smoothly.mp3 with 8 matches.


09 03: 05 Röyksopp - Poor Leno.mp3 with 7 matches.


10 04: 07_athlete_-_yesterday_threw_everyting_a_me.mp3 with 7 matches.


11 05: Flogging Molly - WMH - Dont Let Me Dia Still Wonderin.mp3 with 7 matches.


12 06: coldplay - 04 - sparks.mp3 with 7 matches.


13 07: Coldplay - Help Is Round The Corner (yellow b-side).mp3 with 7 matches.


14 08: the arcade fire - 09 - rebellion (lies).mp3 with 7 matches.




15 09: 01-coldplay-_clocks.mp3 with 6 matches.


16 10: 02 Scared Tonight.mp3 with 6 matches.




17 11: 02-radiohead-pyramid_song-ksi.mp3 with 6 matches.


18 12: 03 Shadows Fall.mp3 with 6 matches.




19 13: 04 Röyksopp - In Space.mp3 with 6 matches.


20 14: 04 Track04.mp3 with 6 matches.




21 15: 05 - Dress Up In You.mp3 with 6 matches.


22 16: 05 Supergrass - Can't Get Up.mp3 with 6 matches.


23 17: 05 Track05.mp3 with 6 matches.


24 18: 05The Fox In The Snow.mp3 with 6 matches.


25 19: 05_athlete_-_wires.mp3 with 6 matches.


26 20: 06 Racoon - Feel Like Flying.mp3 with 6 matches.


27   




28 Matching took: 259 ms


29   




30 Final prediction: 08_the_kooks_-_match_box.mp3.song with 16 matches.


It works!!

Listening for 20 seconds it can match almost all the songs I have. And even this live recording of the Editors could be matched to the correct song after listening 40 seconds!

Again it feels like magic! :-)

Currently, the code isn’t in a releasable state and it doesn’t work perfectly. It has been a pure weekend-hack, more like a proof-of-concept / algorithm exploration.

Maybe, if enough people ask about it, I’ll clean it up and release it somewhere. Or turn it into a huge online empire like Shazam… who knows!





Comments

Recent Techrights' Posts

Security Advisory: Debian falls for social engineering hacks
Reprinted with permission from Daniel Pocock
The High Cost of Making Scepticism of Proprietary Voting Machines a "Trump" and "Conspiracy Theory" Territory
Time to get back to paper? Or read an old paper?
Today We Got an Early Birthday Gift
Exciting times
 
"Many Applications Labelled as "Cybersecurity" and Given a Veneer of Legitimacy Are Really "Weaponised" and Abusive Code"
New from Dr. Andy Farnell
[Teaster] [Meme] New Ways of Wrecking (NWoW)
The EPO
Gateway for News and Blogs
In the long run, this site and its sister site (less overlap between them now) should hopefully become a popular destination for people who look for information, not chaff
Going Even Faster
We hope the site will be faster soon
Psychopaths Who Reaffirm Our Work's Value
Psychopaths and sociopaths lack empathy, so they're willing to go very far and stoop as low as they deem necessary
[Meme] How Low Can You Go at the European Patent Office?
Not just in terms of patent quality
More Cuts/End to Benefits for EPO Workers (Europe's Working Conditions Incompatible With the European Patent Convention)
"The Office is now reviving it but plans to introduce new cuts on benefits"
Over at Tux Machines...
GNU/Linux news for the past day
IRC Proceedings: Thursday, November 07, 2024
IRC logs for Thursday, November 07, 2024
Gemini Links 08/11/2024: US Election, RetroChallenge 2024, and More
Links for the day
[Meme] Questioning Proprietary Software? Not OK...
A disaster long in the making
Links 07/11/2024: HTTP/3, Health Research, and Punditry
Links for the day
Gemini Links 07/11/2024: On Writing Publicly and Record Player Table
Links for the day
Open Source Security Foundation (OpenSSF) Hosted SOSS as Microsoft Propaganda Platform With Microsoft Front Group OSI
They essentially promote what they're attacking under false pretences [...] OSI is deeply corrupt. It's more toxic than arsenic.
Anti-Linux FUD, Now in LLM Form, Thanks to Brittany Day
They attack Linux with chatbots
[Meme] When You Discredit People Who Discredit Secret Code
proprietary systems with hundreds of millions of transistors (and hundreds of millions of lines of code)
Links 07/11/2024: Online Manipulation in Social Control Media, Election Deniers, and More
Links for the day
Gemini Links 07/11/2024: emacs-guix and File Hoarding
Links for the day
[Meme] Election Day at the European Patent Office
Less than 60 minutes left to cast your vote
Staff Union of the European Patent Office (SUEPO) Election Ending Today
In one hour
[Meme] When the Patent Office Does Illegal Things and Staff Speaks Out
many leaks received today
[Meme] Going Too Far to the Left Can Breed Militant Ideology
Some people can never be appeased because they prefer not to be appeased
Apple's Debt Has Skyrocketed While Gimmicks Like Vision Pro Failed
In Apple's case, the debt is almost double the "Cash on Hand", which isn't even cash
FSF Expressed No Preference Regarding Presidential Candidates (Its Founder Did)
Because he is a principled person, he does not prioritise loyalty to customers or employers (money)
A President Trump is Excellent News to Microsoft
His racist policies gave lots of contracts to Microsoft
Who Next on the Linux Foundation's 'Kill List'?
Remember that only about 2% of the "Linux" Foundation's budget goes to Linux
Links 07/11/2024: Facebook Scams, Journalists on Strike
Links for the day
Over at Tux Machines...
GNU/Linux news for the past day
IRC Proceedings: Wednesday, November 06, 2024
IRC logs for Wednesday, November 06, 2024
Microsoft-Connected Publishers Want Us to Think That Linux is Some Sort of a Virus and a "Backdoor"
"The problem is with windows and the attack vector is via Windows"
We've Made it to 18! Here's to Another 18!
Going on for another 18 years means until some time at the end of 2042
Links 07/11/2024: Political Angst and Laptop Issues
Links for the day
Even LKML Subjected to Slop/SPAM by Guardian Digital, Inc (linuxsecurity.com)
They're really awful
Links 06/11/2024: BPF in RFC 9669, More Facebook Fines for Privacy Abuses
Links for the day
Gemini Links 06/11/2024: Political Shock and Hermaic Encouragement
Links for the day
Planet Debian Allows Politics (But It Depends on Your Opinions and Debian's Big Sponsors)
Planet Debian is OK with politics... as long as all your political opinions are the "correct" ones and you add cute animals
What Makes RMS Such an Attractive Target ('Discreditisation' Campaigns)
Don't be so easily fooled
The Biggest OEMs or Vendors of GNU/Linux Stopped Competing With Microsoft (Which Pays Them to Promote Windows, Too)
Where are the competition authorities (or regulators for that matter)?
Let's Encrypt Falls to a New Low of Only 0.6% of Gemini Capsules Known to Lupa
In Gemini Protocol, certificates for encryption are required, but centralised Certificate Authorities (CAs) aren't needed
Computer-Generator Crap Flooding the Web, the Latest Example About "Linux"
Here's today's example
Links 06/11/2024: Election Disinformation and Legal Actions
Links for the day
Gemini Links 06/11/2024: Stargazing and Death on Hallowe'en
Links for the day
Would You Trust a Liar?
Why lie about the authorship?
Mass Layoffs at Mozilla Announced During US Elections
Maybe nobody will notice?
[Meme] Announcing "Results" Before Everyone Even "Played"
There is a "tech" angle to otherwise political news
US Polls Close in One Minute (Social Control Media Does Not Care, Will Not Wait)
US election results will be known in about 2 days
Concentration and Centralisation Versus Aggregation or Syndication
KDE has a history of burying old sites
Social Control Media, Even Hours Before Polls Have Closed
Has social control media controlled by CPC (TikTok) and the Trumpmobile guy (Musk's "X") done enough to convince people not to even vote (based on presumptive "results", presented a long time before all polls have closed)?
Over at Tux Machines...
GNU/Linux news for the past day
IRC Proceedings: Tuesday, November 05, 2024
IRC logs for Tuesday, November 05, 2024
Wayland Pains in Community-Led Distros of GNU/Linux
Few people and companies use Wayland; there's hardly any technical or practical reason to choose it
IBM Still Conflating Microsoft With 'Security'
As a meme
Sanctions Cause Fragmentation in Software
some Chinese Linux developers are already subjected to restrictions similar to Russians'
Web Failing With Slop, Even in 'Linux' Sites (LLM Spam)
Add SEO prompting to the mix and the Web becomes a pool of slop, not knowledge
[Meme] State of the World Wide Web and Online Journalism
Technically a failure (DRM) and cannot even get basic things right
Trump's signature policy, building a wall, copied from Irish-Australian student politician
Reprinted with permission from Daniel Pocock
Linus Torvalds' self-deprecating LKML CoC mail linked to Hitler's first writing: Gemlich letter
Reprinted with permission from Daniel Pocock
[Meme] Turning 18 in One Day
just one more day