Bonum Certa Men Certa

From Moderate Advice to FUD and Misinformation: The Case of a VPN Vulnerability (CVE-2019-14899)

Sometimes it morphes to "Linux" and a false description of what's happening

VPN fake news



Summary: What should have been a trivial bugfix in a variety of operating systems and bits of software -- both proprietary and Free software -- somehow became anti-Linux FUD, clickbait and worse

EARLIER in the week I saw a report about CVE-2019-14899. There was nothing exciting about it. I mentioned it briefly and then moved on. But the following day and especially two days later (after the announcement [1]) the press was absolutely flooding with reports, especially from insecurity companies and anti-Linux sites [2-22]. At times even deliberate lies were spread [23] (there are no attacks). See below a roughly chronological list/timeline. The initial report was calm and rational.



"The only shocking thing isn't the bug but the level of media attention it has received."When one carefully examines what's at stake, the patching status (it's not a zero-day hole), the severity and risk level etc. one begins to wonder what motivated all this attention. Much more severe issues are being discovered each week if not month.

We first mentioned this 2 or 3 days ago, without even filing it as a high-priority Daily Links pick. The only shocking thing isn't the bug but the level of media attention it has received. This is not the first time such a thing happens. When similar issues affect Windows the media just describes these as "computer issues" or "PC".

Related/contextual items from the news:



  1. VPN hijacking on Linux (and beyond) systems
    Hi all,
    
    

    I am reporting a vulnerability that exists on most Linux distros, and other *nix operating systems which allows a network adjacent attacker to determine if another user is connected to a VPN, the virtual IP address they have been assigned by the VPN server, and whether or not there is an active connection to a given website. Additionally, we are able to determine the exact seq and ack numbers by counting encrypted packets and/or examining their size. This allows us to inject data into the TCP stream and hijack connections.

    Most of the Linux distributions we tested were vulnerable, especially Linux distributions that use a version of systemd pulled after November 28th of last year which turned reverse path filtering off. However, we recently discovered that the attack also works against IPv6, so turning reverse path filtering on isn't a reasonable solution, but this was how we discovered that the attack worked on Linux.

    Adding a prerouting rule to drop packets destined for the client's virtual IP address is effective on some systems, but I have only tested this on my machines (Manjaro 5.3.12-1, Ubuntu 19.10 5.3.0-23). This rule was proposed by Jason Donenfeld, and an analagous rule on the output chain was proposed by Ruoyu "Fish" Wang of ASU. We have some concerns that inferences can still be made using slightly different methods, but this suggestion does prevent this particular attack.

    There are other potential solutions being considered by the kernel maintainers, but I can't speak to their current status. I will provide updates as I receive them.

    I have attached the original disclosure I provided to distros@vs.openwall.org and security@kernel.org below, with at least one critical correction: I orignally listed CentOS as being vulnerable to the attack, but this was incorrect, at least regarding IPv4. We didn't know the attack worked against IPv6 at the time we tested CentOS, and I haven't been able to test it yet.

    William J. Tolley Beau Kujath Jedidiah R. Crandall

    Breakpointing Bad & University of New Mexico

    *************************************************

    **General Disclosure:

    We have discovered a vulnerability in Linux, FreeBSD, OpenBSD, MacOS, iOS, and Android which allows a malicious access point, or an adjacent user, to determine if a connected user is using a VPN, make positive inferences about the websites they are visiting, and determine the correct sequence and acknowledgement numbers in use, allowing the bad actor to inject data into the TCP stream. This provides everything that is needed for an attacker to hijack active connections inside the VPN tunnel.

    This vulnerability works against OpenVPN, WireGuard, and IKEv2/IPSec, but has not been thoroughly tested against tor, but we believe it is not vulnerable since it operates in a SOCKS layer and includes authentication and encryption that happens in userspace. It should be noted, however, that the VPN technology used does not seem to matter and we are able to make all of our inferences even though the responses from the victim are encrypted, using the size of the packets and number of packets sent (in the case of challenge ACKs, for example) to determine what kind of packets are being sent through the encrypted VPN tunnel.

    We have already reported a related vulnerability to Android earlier this year related to the issue, which resulted in the assignment of CVE-2019-9461, however, the CVE strictly applies to the fact that the Android devices would respond to unsolicited packets sent to the user’s virtual IP address over the wireless interface, but this does not address the fundamental issue of the attack and did not result in a change of the reverse path settings of Android as of the most recent security update.

    This attack did not work against any Linux distribution we tested until the release of Ubuntu 19.10, and we noticed that the rp_filter settings were set to “loose” mode. We see that the default settings in sysctl.d/50-default.conf in the systemd repository were changed from “strict” to “loose” mode on November 28, 2018, so distributions using a version of systemd without modified configurations after this date are now vulnerable. Most Linux distributions we tested which use other init systems leave the value as 0, the default for the Linux kernel.

    We have described the procedure for reproducing the vulnerability with Linux and included a section illustrating the differences in architecture.

    There are 3 steps to this attack:

    1. Determining the VPN client’s virtual IP address 2. Using the virtual IP address to make inferences about active connections 3. Using the encrypted replies to unsolicited packets to determine the sequence and acknowledgment numbers of the active connection to hijack the TCP session

    There are 4 components to the reproduction:

    1. The Victim Device (connected to AP, 192.168.12.x, 10.8.0.8) 2. AP (controlled by attacker, 192.168.12.1) 3. VPN Server (not controlled by attacker, 10.8.0.1) 4. A Web Server (not controlled by the attacker, public IP in a real- world scenario)

    The victim device connects to the access point, which for most of our testing was a laptop running create_ap. The victim device then establishes a connection with their VPN provider.

    The access point can then determine the virtual IP of the victim by sending SYN-ACK packets to the victim device across the entire virtual IP space (the default for OpenVPN is 10.8.0.0/24). When a SYN-ACK is sent to the correct virtual IP on the victim device, the device responds with a RST; when the SYN-ACK is sent to the incorrect virtual IP, nothing is received by the attacker.

    To quickly demonstrate this difference, we use the nping commands on the AP device running create_ap. The source IP is the gateway of our AP, the destination IP is the virtual IP assigned to the tun interface by the VPN client, ap0 is the interface create_ap created on the attacker device, and the destination MAC is the victim’s wireless MAC address.

    For example:

    The correct address generates a RST from the victim:

    nping --tcp --flags SA --source-ip 192.168.12.1 --dest-ip 10.8.0.8 -- rate 3 -c 3 -e ap0 --dest-mac 08:00:27:9c:53:12

    The incorrect address does not elicit a response from the victim:

    nping --tcp --flags SA --source-ip 192.168.12.1 --dest-ip 10.8.0.9 -- rate 3 -c 3 -e ap0 --dest-mac 08:00:27:9c:53:12

    Similarly, to test if there is an active connection for any given website, such as 64.106.46.56, for example, we send SYN or SYN-ACKs from 64.106.46.56 on port 80 (or 443) to the virtual IP of the victim across the entire ephemeral port space of the victim. The correct four- tuple will elicit no more than 2 challenge ACKs per second from the victim, whereas the victim will respond to the incorrect four-tuple with a RST for each packet sent to it.

    To quickly test this, we suggest creating a netcat connection on the victim device, such as this:

    Netcat 64.106.46.56 80 -p 40404

    The correct four-tuple generates challenge ACKs

    nping --tcp --flags SA --source-ip 64.106.46.56 -g 80 --dest-ip 10.8.0.8 -p 40404 --rate 10 -c 10 -e ap0 --dest-mac 08:00:27:9c:53:12

    The incorrect four-tuple generates a single RST for each packet sent:

    nping --tcp --flags SA --source-ip 64.106.46.56 -g 80 --dest-ip 10.8.0.8 -p 40405 --rate 10 -c 10 -e ap0 --dest-mac 08:00:27:9c:53:12

    Finally, once the attacker determined that the user has an active TCP connection to an external server, we will attempt to infer the exact next sequence number and in-window acknowledgment number needed to inject forged packets into the connection. To find the appropriate sequence and ACK numbers, we will trigger responses from the client in the encrypted connection found in part 2. The attacker will continually spoof reset packets into the inferred connection until it sniffs challenge ACKs. The attacker can reliably determine if the packets flowing from the client to the VPN server are challenge ACKs by looking at the size and timing of the encrypted responses in relation to the attacker's spoofed packets. The victim’s device will trigger a TCP challenge ACK on each reset it receives that has an in-window sequence number for an existing connection. For example, if the client is using OpenVPN to exchange encrypted packets with the VPN server, then the client will always respond with an SSL packet of length 79 when a challenge ACK is triggered.

    The attacker must spoof resets to different blocks across the entire sequence number space until one triggers an encrypted challenge ACK. The size of the spoof block plays a significant role in how long the sequence inference takes, but should be conservative as to not skip over the receive window of the client. In practice, when the attacker thinks it sniffs an encrypted challenge-ACK, it can verify this is true by spoofing X packets with the same sequence number. If there were X encrypted responses with size 79 triggered, then the attacker knows for certain it is triggering challenge ACKs (at most 2 packets of size 79 per second).

    After the attacker has inferred the in-window sequence number for the client's connection, they can quickly determine the exact sequence number and in-window ACK needed to inject. First, they spoof empty push-ACKs with the in-window sequence while guessing in-window ACK numbers. Once the spoofed packets trigger another challenge-ACK, an in- window ACK number is found. Finally, the attacker continually spoofs empty TCP data packets with the in-window ACK and sequence numbers as it decrements the sequence number after each send. The victim will respond with another challenge ACK once the attacker spoofs the exact sequence number minus one. The attacker can now inject arbitrary payloads into the ongoing encrypted connection using the inferred ACK and next sequence number.

    This can be tested by observing the behavior from this sequence of commands, continuing with the same four-tuple:

    Using the four-tuple from the previous steps, we send RSTs in the sequence number range in blocks of 50,000 until we trigger a challenge ACK.

    nping --tcp --flags R --source-ip 64.106.46.56 -g 80 --dest-ip 10.8.0.8 -p 40404 --rate 10 -c 10 -e ap0 --dest-mac 08:00:27:9c:53:12 --seq [SEQ RANGE]

    If the packet lands in-window, the victim will respond with at most 2 challenge ACKs per second. These packets are still encrypted and originate from the virtual interface, unlike with Android, but we can still determine the contents of these packets by their size. The encrypted challenge ACK packets are larger than the encrypted RST packets. You can run tcpdump on the victim machine to accelerate the testing of his process by viewing the actual sequence and acknowledgement numbers.

    After we have found an in-window sequence number, we locate an in- window acknowledgement by spoofing empty PSH-ACKs with the in-window sequence number and guessing the acknowledgement number by dividing the acknowledgement number space into eight blocks. In most instances, seven of these blocks will trigger challenge ACKs, but one of them will not, which allows us to quickly determine which block falls within the acknowledgement window. We are interested in the block that does not respond with a challenge ACK. This behavior can be observed by using an in-window sequence number and an acknowledgement number in the block containing the correct acknowledgement number.

    nping --tcp --flags PA --source-ip 64.106.46.56 -g 80 --dest-ip 10.8.0.8 -p 40404 --rate 10 -c 10 -e ap0 --dest-mac 08:00:27:9c:53:12 -seq 12345678 --ack [ACK RANGE]

    Finally, using the in-window sequence and acknowledgement numbers, we spoof empty PSH-ACKs using the same in-windows acknowledgement number and decrementing the sequence number until we trigger another challenge ACK. This sequence number is one fewer than the next expected sequence number. We can then arbitrarily inject data into the active TCP connection.

    Continuing with our toy example:

    nping --tcp --flags PA --source-ip 64.106.46.56 -g 80 --dest-ip 10.8.0.8 -p 40404 --rate 10 -c 10 -e ap0 --dest-mac 08:00:27:9c:53:12 -seq [EXACT] --ack [IN-WINDOW] --data-string “hello,world.”

    **Operating Systems Affected:

    Here is a list of the operating systems we have tested which are vulnerable to this attack:

    Ubuntu 19.10 (systemd) Fedora (systemd) Debian 10.2 (systemd) Arch 2019.05 (systemd) Manjaro 18.1.1 (systemd)

    Devuan (sysV init) MX Linux 19 (Mepis+antiX) Void Linux (runit)

    Slackware 14.2 (rc.d) Deepin (rc.d) FreeBSD (rc.d) OpenBSD (rc.d)

    This list isn’t exhaustive, and we are continuing to test other distributions, but made usere to cover a variety of init systems to show this is not limited to systemd.

    **Operating System Variations:

    The behavior is slightly different on other operating systems. Here is a summary of the differences:

    Android: In the first phase of the attack, Android responds with unencrypted RSTs to unsolicited SYN-ACKs for the correct port and ICMP packets for the incorrect one. For the second phase, it will respond with RSTs on the correct four-tuple.

    MacOS/iOS: The first phase of the attack does not work as described here, but you can use an open port on the Apple machine to determine the virtual IP address. We use port 5223, which is used for iCloud, iMessage, FaceTime, Game Center, Photo Stream, and push notifications etc.

    We know the phone will communicate with one of the push notification servers on port 5223, and have observed that on MacOS, the port used on the victim device is not the same as the port used to connect to the VPN server, but is very close (in our testing it has always been within 10).

    nping --tcp --flags SA --source-ip 17.57.144.[84-87] -g 5223 --dest-ip 10.8.0.8 -p [X] --rate 3 -c 3 -e ap0 --dest-mac 08:00:27:9c:53:12

    For iOS devices, it does not follow this convention for choosing the client’s source port, but always choose a port between ~48000-50000 (our testing on iOS 13.1 was between 48162-49555).

    FreeBSD: The first two phases work essentially the same as Linux, however, for the last phase, the ACK number is not needed at all, so that piece of phase three can be skipped.

    OpenBSD: OpenBSD responds to spoofed SYN packets to the correct virtual IP with unencrypted RST packets, and the incorrect virtual IP elicits unencrypted NTP packets or nothing at all for the first part of the attack. For the second part, the responses are encrypted, but we can still determine which packets are challenge ACKs from the packet size, as with Linux. Connections can be reset by sending a RST with the correct sequence number.

    **Possible Mitigations:

    1. Turning reverse path filtering on

    Potential problem: Asynchronous routing not reliable on mobile devices, etc. Also, it isn’t clear that this is actually a solution since it appears to work in other OSes with different networking stacks. Also, even with reverse path filtering on strict mode, the first two parts of the attack can be completed, allowing the AP to make inferences about active connections, and we believe it may be possible to carry out the entire attack, but haven’t accomplished this yet.

    2. Bogon filtering

    Potential problem: Local network addresses used for vpns and local networks, and some nations, including Iran, use the reserved private IP space as part of the public space.

    3. Encrypted packet size and timing

    Since the size and number of packets allows the attacker to bypass the encryption provided by the VPN service, perhaps some sort of padding could be added to the encrypted packets to make them the same size. Also, since the challenge ACK per process limit allows us to determine if the encrypted packets are challenge ACKs, allowing the host to respond with equivalent-sized packets after exhausting this limit could prevent the attacker from making this inference.

    We have prepared a paper for publication concerning this vulnerability and the related implications, but intend to keep it embargoed until we have found a satisfactory workaround. Then we will report the vulnerability to oss-security@lists.openwall.com. We are also reporting this vulnerability to the other services affected, which also includes: Systemd, Google, Apple, OpenVPN, and WireGuard, in addition to distros@vs.openwall.org for the operating systems affected.

    Thanks,

    William J. Tolley Beau Kujath Jedidiah R. Crandall

    Breakpointing Bad & University of New Mexico
  2. New Vulnerability Lets Attackers Hijack VPN Connections on Most UNIX Systems

    Affecting most GNU/Linux distributions, as well as FreeBSD, OpenBSD, Android, iOS and macOS systems, the new security vulnerability could allow a local attacker to determine if another user is connected to a VPN (Virtual Private Network) server and whether or not there's an active connection to a certain website.

    The vulnerability (CVE-2019-14899) is exploitable with adjacent network access, which requires the attacker to have access to either the broadcast or collision domain of the vulnerable operating system, and lets attackers to hijack connections by injecting data into the TCP (Transmission Control Protocol) stream.

    The vulnerability has been reported to work against various popular VPN solutions, including OpenVPN, IKEv2/IPSec, as well as WireGuard, and it doesn't matter which VPN technology is being used, thus allowing attacker to determine the type of packets being sent through the encrypted VPN tunnel.

  3. Tricky VPN-busting bug lurks in iOS, Android, Linux distros, macOS, FreeBSD, OpenBSD, say university eggheads

    A bug in the way Unix-flavored systems handle TCP connections could put VPN users at risk of having their encrypted traffic hijacked, it is claimed.

    The University of New Mexico team of William Tolley, Beau Kujath, and Jedidiah Crandall this week said they've discovered CVE-2019-14899, a security weakness they report to be present in "most" Linux distros, along with Android, iOS, macOS, FreeBSD, and OpenBSD. The upshot is, if exploited, encrypted VPN traffic can be potentially hijacked and disrupted by miscreants on the network.

    To pull off the attack, the US-based posse says, a hacker would need to be "network adjacent" to their target, or control an access point on the victim's local network. Once the victim connected to their VPN, the spy would be able to, for one thing, tamper with the TCP stream to do things like inject packets into the stream.

  4. New Linux Vulnerability Lets Attackers Hijack VPN Connections

    Security researchers found a new vulnerability allowing potential attackers to hijack VPN connections on affected *NIX devices and inject arbitrary data payloads into IPv4 and IPv6 TCP streams. They disclosed the security flaw tracked as CVE-2019-14899 to distros and the Linux kernel security team, as well as to others impacted such as Systemd, Google, Apple, OpenVPN, and WireGuard. The vulnerability is known to impact most Linux distributions and Unix-like operating systems including FreeBSD, OpenBSD, macOS, iOS, and Android. A currently incomplete list of vulnerable operating systems and the init systems they came with is available below, with more to be added once they are tested and found to be affected: Ubuntu 19.10 (systemd), Fedora (systemd), Debian 10.2 (systemd), Arch 2019.05 (systemd), Manjaro 18.1.1 (systemd), Devuan (sysV init), MX Linux 19 (Mepis+antiX), Void Linux (runit), Slackware 14.2 (rc.d), Deepin (rc.d), FreeBSD (rc.d), and OpenBSD (rc.d).

  5. New Linux Vulnerability Lets Attackers Hijack VPN Connections

    Security researchers found a new vulnerability allowing potential attackers to hijack VPN connections on affected *NIX devices and inject arbitrary data payloads into IPv4 and IPv6 TCP streams.

    They disclosed the security flaw tracked as CVE-2019-14899 to distros and the Linux kernel security team, as well as to others impacted such as Systemd, Google, Apple, OpenVPN, and WireGuard.

  6. New vulnerability lets attackers sniff or hijack VPN connections

    The vulnerability -- tracked as CVE-2019-14899 -- resides in the networking stacks of multiple Unix-based operating systems, and more specifically, in how the operating systems reply to unexpected network packet probes.

  7. Hackers Can Hijack VPN Connections Using A New Linux Vulnerability

    Researchers have found a vulnerability on most Linux distros and *NIX devices which allow hackers to hijack the VPN connections and inject malicious data into the TCP stream.

    The security researchers found the vulnerability in most Linux distributions and operating systems such as Linux, FreeBSD, OpenBSD, macOS, iOS, and Android.

  8. Linux security flaw could let VPN connections be hacked

    The Breakpointing Bad cybersecurity research team from the University of New Mexico discovered and reported on a security flaw which could allow malicious actors to hack Virtual Private Network (VPN) connections.

    William J. Tolley, Beau Kujath, and Jedidiah R. Crandall said the flaw impacts Linux, Android, macOS and other Unix-based operating systems and could allow attackers to sniff, hijack and tamper with VPN-tunnelled connections. The vulnerability was named CVE-2019-14899, with the researchers claiming it takes advantage of how operating systems handle unexpected network probes.

  9. Linux Flaw Allows VPN Hijacking

    A number of Linux distributions, including Ubuntu, Fedora, and Debian, contain a newly discovered vulnerability that an attacker could use to determine whether an individual is using a VPN and then potentially hijack that encrypted connection.

    A research team from the University of New Mexico discovered the vulnerability and developed an attack to exploit it. The attack has some specific requirements and relies on some analysis of the traffic going to and from the target device running the VPN client. The attack is confirmed to work against WireGuard and OpenVPN, but the researchers said that the VPN a victim is using doesn’t really matter. The main prerequisite for the attack to work is for the attacker to be able to send unsolicited packets to the victim’s VPN client.

  10. New Linux vulnerability lets attackers to hijack VPN connections

    Three researchers from the University of New Mexico and Breakpointing Bad have identified vulnerability in the way Unix and Linux-based operating systems like the macOS handle the TCIP connections. Researchers believe that vulnerability can specifically affect VPN users by hijacking encrypted traffic.

  11. New Linux Bug Lets Attackers Hijack Encrypted VPN Connections

    A team of cybersecurity researchers has disclosed a new severe vulnerability affecting most Linux and Unix-like operating systems, including FreeBSD, OpenBSD, macOS, iOS, and Android, that could allow remote 'network adjacent attackers' to spy on and tamper with encrypted VPN connections.
    The vulnerability, tracked as CVE-2019-14899, resides in the networking stack of various operating systems and can be exploited against both IPv4 and IPv6 TCP streams.
    Since the vulnerability does not rely on the VPN technology used, the attack works against widely implemented virtual private network protocols like OpenVPN, WireGuard, IKEv2/IPSec, and more, the researchers confirmed.
    This vulnerability can be exploited by a network attacker — controlling an access point or connected to the victim's network — just by sending unsolicited network packets to a targeted device and observing replies, even if they are encrypted.

  12. VPN Bug Affects “Most” Linux Distros

    A team of security researchers from the University of New Mexico has disclosed a new vulnerability that could allow attackers to probe devices and determine various details about the VPN (Virtual Private Network) connection status of a user.

    The security vulnerability (CVE-2019-14899) appears to affect most GNU/Linux distributions, besides FreeBSD, OpenBSD, Android, iOS and macOS systems. William J. Tolley, one of the security researchers, explained in a post that the vulnerability could let attackers to determine if another user is connected to a VPN, the virtual IP address they have been assigned by the VPN server, and also sniff out whether or not there is an active connection to a given website.

  13. OpenBSD devs patch authentication bypass bug

    One of the internet’s most popular free operating systems allowed attackers to bypass its authentication controls, effectively leaving the keys in the back door, according to an advisory released this week. The developers of the OpenBSD system have already patched the vulnerability.

    OpenBSD allowed people access to its smtpd, ldapd, and radiusd programs – which send mail, allow access to user directories, and allow remote access to the computer system. All an attacker needed to do was enter a specific word prefixed by a hyphen as a username.

    Qualys Research Labs found four bugs in BSD Authentication, which is the code that OpenBSD uses to authenticate users. Three of them were local privilege escalation bugs, while the other, CVE-2019-19521, bypassed the authentication system altogether. According to its security advisory, BSD Authentication supports four authentication styles: password, a one-time password mechanism called S/Key, and Yubico’s YubiKey hardware token.



  14. New Linux vulnerability puts VPN connections at risk of hijacking

    Furthermore, the research team also identified the SEQ and ACK numbers from inspecting the encrypted packet size and number and managed to inject data into the TCP steam, which led to the hijacking of the connection. This means VPN technology was ineffective in preventing the attack since even encrypted packets could be assessed.

    After testing on Manjaro 18.1.1, CentOS, and Ubuntu 19, researchers discovered that the exploit was applicable to both IPv4 and IPv6. Other systems that are vulnerable to exploitation include Void Linux, Debian 10.2, Slackware 14.2, Arch 2019.5, MX Linux 19, Deepin, Fedora, Devuan, FreeBSD, and OpenBSD. They will be testing the effectiveness of the exploit against Tor as well.

  15. Attackers using Linux Vulnerability to Hijack VPN Connections
  16. Linux VPN connections can be hacked

    Insecurity experts at Breakpointing Bad have found aa new vulnerability allowing potential attackers to hijack VPN connections on affected *NIX devices and inject arbitrary data payloads into IPv4 and IPv6 TCP streams.

    The security flaw tracked as CVE-2019-14899 to distros and the Linux kernel security team, as well as to others impacted such as Systemd, Google, Apple, OpenVPN, and WireGuard. The vulnerability is known to impact most Linux distributions and Unix-like operating systems including FreeBSD, OpenBSD, macOS, iOS, and Android.

    A currently incomplete list of vulnerable operating systems and the init systems they came with is available below, with more to be added once they are tested and found to be affected: Ubuntu 19.10 (systemd), Fedora (systemd), Debian 10.2 (systemd), Arch 2019.05 (systemd), Manjaro 18.1.1 (systemd), Devuan (sysV init), MX Linux 19 (Mepis+antiX), Void Linux (runit), Slackware 14.2 (rc.d), Deepin (rc.d), FreeBSD (rc.d), and OpenBSD (rc.d).

  17. VPN connections could be hacked due to Linux security flaw

    A new vulnerability that could allow potential attackers to hijack VPN connections on affected NIX devices and inject arbitrary data payloads into IPv4 and Ipv6 TCP streams has been discovered by security researchers.

    The researchers disclosed the security flaw they detected, tracked as CVE-2019-14899, to Linux distro makers, the Linux kernel security team and to others that are impacted including systemd, Google, Apple, OpenVPN and WireGuard.

  18. Unix-like Systems Vulnerable to VPN Inferring and Hijacking Attacks

    Three researchers from Breakpointing Bad and the University of New Mexico have discovered a vulnerability that exists in Linux and Unix-like operating systems like Android and macOS. Given the tracking code “CVE-2019-14899”, the flaw resides in the routing table code and the TCP code that is present in these systems. The vulnerability allows an attacker to perform traffic analysis via clever use of encrypted DNS queries in conjunction with error messages, leading to the sniffing of open TCP connection information. The attack was discovered quite a while back, but the researchers disclosed it publicly now, and after they allowed the vendors some time to plug the holes.

  19. Researchers say VPN bug affects Linux, Unix systems
  20. Linux Bug Opens Most VPNs to Hijacking

    In a coffee-shop scenario, attackers can hijack “secure” VPN sessions of those working remotely, injecting data into their TCP streams.

    A vulnerability in most Linux distros has been uncovered that allows a network-adjacent attacker to hijack VPN connections and inject rogue data into the secure tunnels that victims are using to communicate with remote servers.

    According to researchers at University of New Mexico and Breakpointing Bad, the bug (CVE-2019-14899), “allows…an attacker to determine if…a user is connected to a VPN, the virtual IP address they have been assigned by the VPN server, and whether or not there is an active connection to a given website.”

  21. New vulnerability lets attackers sniff or hijack VPN connections


  22. Researchers find a new Linux vulnerability that allows attackers to sniff or hijack VPN connections

    On Wednesday, security researchers from the University of New Mexico disclosed a vulnerability impacting most Linux distributions and Unix-like operating systems including FreeBSD, OpenBSD, macOS, iOS, and Android. This Linux vulnerability can be exploited by an attacker to determine if a user is connected to a VPN and to hijack VPN connections.

    The researchers shared that this security flaw tracked as CVE-2019-14899, “allows a network adjacent attacker to determine if another user is connected to a VPN, the virtual IP address they have been assigned by the VPN server, and whether or not there is an active connection to a given website.” Additionally, attackers can determine the exact sequence and acknowledgment numbers by counting encrypted packets or by examining their size. With this information in hand, they can inject arbitrary data payloads into IPv4 and IPv6 TCP streams.



  23. Hackers Exploit New Linux Vulnerability To Hijack VPN Connections

    The attack has been reported to work against several popular VPN solutions, including OpenVPN, IKEv2/IPSec, and WireGuard.

    However, the researchers are still testing their viability against Tor, as it works in a SOCKS layer and implements authentication and encryption that takes place in userspace.

    “It should be noted, however, that the VPN technology used does not seem to matter and we are able to make all of our inferences even though the responses from the victim are encrypted, using the size of the packets and number of packets sent (in the case of challenge ACKs, for example) to determine what kind of packets are being sent through the encrypted VPN tunnel,” clarifies the research team.



Recent Techrights' Posts

IBM Layoffs in India, More Coming Soon, Say Apparent Insiders
Threads regarding IBM layoffs
 
Slopfarm: Firing 35,000 Employee is "Saving the Company"
"Big Blue" is getting smaller all the time
Slopfarms About the "Linux CEO" Linus Torvaldos [sic]
nowadays NVIDIA builds and helps build a giant Ponzi scheme
Vista 11 is "10" (Ten Percent)
Some months ago Microsoft openly admitted that it had lost (shed off) hundreds of millions of Windows users
Dealing With Online Pogroms
lawfare funded by third parties
The Year Apple Would Rather Forget
We await further stumbles and falls from Apple (in 2026)
"EU's reform agenda threatens to erase a decade of digital rights"
This is really sad for those of us who spent decades promoting and boosting/advocating the EU
Gemini Links 29/12/2025: Earlier "Happy New Year 2026" and "Dead Archivist Society"
Links for the day
Links 29/12/2025: Putin Critic Sergei Udaltsov Imprisoned, Cloudflare’s Outages Discussed
Links for the day
LLMs Are Inherently Parasitic, We Need to Treat Them Accordingly
a maintenance burden for those who possess actual intelligence
Links 29/12/2025: Bottled Water Considered Harmful, Cheetos Promoting Nazis in Europe
Links for the day
EPO People Power - Part XVIII - European Patent Office "Paints Itself as Progressive While Literally Being Represented by Cokeheads"
To what length/s will German authorities and media (not just in Germany) go to protect the EPO's "precious image"?
What IBM Will Do to Red Hat in the Coming Year or Years
This won't end up well for GNU/Linux as a whole
Not Turning in His Grave: When People Die, Their Corporate Destruction Becomes a "Turnaround"
All he did was mass layoffs - a tradition that has not ended since then
Over at Tux Machines...
GNU/Linux news for the past day
IRC Proceedings: Sunday, December 28, 2025
IRC logs for Sunday, December 28, 2025
Louis Gerstner Has Died, His Legacy of Mass Layoffs at IBM Hasn't
Hagiographies will follow. They will say he "saved" IBM.
Links 29/12/2025: The Sunday Routine, Limits of Memory, and Gemini Vocabulary
Links for the day
Doxing is Illegal in the UK (Even If You're Based in the US)
Somebody has just added my identity (name, mugshot etc.) to a "hitlist" site of a political nature, pandering to violent people
Misunderstood Weapons of Censorship
It's cruel world out there. One needs to be aware of these shady activities, including "censorship-as-a-service".
Google Confidently Wrong, Nowadays Defaming People Too
I can relate as people did this to me and to my wife
What Happens When Americans Are Out of Office (Away From Work) for a Week? Vista 11 "Share" Falls to Just 10%.
How's that for slow adoption?
2026 Will Have EPO Focus, People Will See What the EPO is Trying to Hide
We certainly hope people will be held accountable
EPO People Power - Part XVII - Drugged, Stoned, and Drunk at the Office During Working Hours (Campinos Friend and Propaganda Chief Has Long Done This)
It's a total disgrace that press all over Europe is still trying to cover this up!
Gemini Links 28/12/2025: Health Ordeals and Discontinued Pedals
Links for the day
Slop About "Linux" Came Only From One Slopfarm This Weekend
Another day has passed with no LLM slop found in our RSS feeds
Links 28/12/2025: 'Digital Detox' and Slop "Backlash Grew Massively in 2025"
Links for the day
Links 28/12/2025: "Mass Quitting Apple" and "Generative AI Industry is Fraudulent, Immoral and Dangerous"
Links for the day
Links 28/12/2025: Fascination, Holidays, and Mormonism
Links for the day
Microsoft's Weapon Against the Reality of XBox (the Console) Dying Seems to be LLM Slop
XBox is dead/dying
Raffles for the Immaterial: Unauthorised Bingo for Red Hat "Vouchers"
This is IBM and some slop images
Andy Farnell on Standing Up Against Technological Oppression
some portions from it
Over at Tux Machines...
GNU/Linux news for the past day
IRC Proceedings: Saturday, December 27, 2025
IRC logs for Saturday, December 27, 2025
Once Again, GAFAM Deletes All Your Data, Only Corrects This After Millions of People Lead an Uproar Online ("Richard Stallman Warned Us About This")
No lessons learned, eh?
Linus Torvalds Blasts Software Freedom Conservancy (SFC) for Attempting to 'Protect' Linux
Like it 'protects' women
New Record for GNU/Linux in Australia (at Microsoft's Expense)
Windows is at an all-time low, GNU/Linux... all-time high
Fighting Over Whose Pockets Are Deeper (or Who Borrows More Money)
When processes favour those who are more wealthy (or more willing to go into infinite debt or steal money of other people) those processes match the attributes of lawfare rather than law
You Know Your Critics Are Jealous and Have Inferiority Complex When...
One day we'll write about all this in great depth
Starting a Book With a Flawed Premise or Weak Hypothesis
To me, Schneier is a sort of "RMS of sec"
Microsoft's Mass Layoffs (30,000+ in 2025) Not About "AI", Just Business Failure
"AI" is replacing... the old excuses for mass layoffs
"But Corruption is Everywhere"
"We'll always have Polio..."
EPO People Power - Part XVI - Berenguer Does Not Speak German, So What Did He Tell German Police That Busted Him?
based in Germany and does not speak the language
Challenges for EPO Insiders to Try to Tackle in 2026
Nothing will get solved as long as the circus that runs this show tries to keep the circus going
Days Without Slop About "Linux"
It's time to move on
Links 27/12/2025: Canada Post Strike Called Off, Debate About Europeans "Working Over Christmas"
Links for the day
Gemini Links 27/12/2025: Household Appliances and Flight Fright
Links for the day
Links 27/12/2025: US Cracking Down on Whistleblowers, Expanding Bombardment Campaigns Worldwide
Links for the day
Resuming EPO Coverage Today, Can António Campinos 'Survive' Cocainegate?
We said we'd continue in the weekend
Links 27/12/2025: More Attacks on Media (Meduza Co-founder Sentenced to Prison in Absentia), "What Owning Music Means To Me"
Links for the day
Gemini Links 27/12/2025: geminiprotocol.net Downtime and Capsular Gemlog Manager
Links for the day
Over at Tux Machines...
GNU/Linux news for the past day
IRC Proceedings: Friday, December 26, 2025
IRC logs for Friday, December 26, 2025